These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 17948996)
1. Size control of gold nanocrystals in citrate reduction: the third role of citrate. Ji X; Song X; Li J; Bai Y; Yang W; Peng X J Am Chem Soc; 2007 Nov; 129(45):13939-48. PubMed ID: 17948996 [TBL] [Abstract][Full Text] [Related]
2. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening. Chen Y; Johnson E; Peng X J Am Chem Soc; 2007 Sep; 129(35):10937-47. PubMed ID: 17696349 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction. Xia H; Bai S; Hartmann J; Wang D Langmuir; 2010 Mar; 26(5):3585-9. PubMed ID: 19877698 [TBL] [Abstract][Full Text] [Related]
4. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Bastús NG; Comenge J; Puntes V Langmuir; 2011 Sep; 27(17):11098-105. PubMed ID: 21728302 [TBL] [Abstract][Full Text] [Related]
5. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Kwon SG; Hyeon T Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462 [TBL] [Abstract][Full Text] [Related]
6. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366 [TBL] [Abstract][Full Text] [Related]
7. Polyhedral gold nanocrystals with O h symmetry: from octahedra to cubes. Seo D; Park JC; Song H J Am Chem Soc; 2006 Nov; 128(46):14863-70. PubMed ID: 17105296 [TBL] [Abstract][Full Text] [Related]
8. Insights into initial kinetic nucleation of gold nanocrystals. Yao T; Sun Z; Li Y; Pan Z; Wei H; Xie Y; Nomura M; Niwa Y; Yan W; Wu Z; Jiang Y; Liu Q; Wei S J Am Chem Soc; 2010 Jun; 132(22):7696-701. PubMed ID: 20469856 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of monodisperse spherical nanocrystals. Park J; Joo J; Kwon SG; Jang Y; Hyeon T Angew Chem Int Ed Engl; 2007; 46(25):4630-60. PubMed ID: 17525914 [TBL] [Abstract][Full Text] [Related]
10. The effect of aniline concentration in the ligand exchange reaction with citrate-stabilized gold nanoparticles. Newman JD; MacCrehan WA Langmuir; 2009 Aug; 25(16):8993-8. PubMed ID: 19537821 [TBL] [Abstract][Full Text] [Related]
11. Nucleation and growth of CeF(3) and NaCeF(4) nanocrystals. Li S; Xie T; Peng Q; Li Y Chemistry; 2009 Mar; 15(11):2512-7. PubMed ID: 19156811 [TBL] [Abstract][Full Text] [Related]
12. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method. Ding W; Zhang P; Li Y; Xia H; Wang D; Tao X Chemphyschem; 2015 Feb; 16(2):447-54. PubMed ID: 25393528 [TBL] [Abstract][Full Text] [Related]
13. pH controlled synthesis of high aspect-ratio gold nanorods. Wei Q; Ji J; Shen J J Nanosci Nanotechnol; 2008 Nov; 8(11):5708-14. PubMed ID: 19198293 [TBL] [Abstract][Full Text] [Related]
14. Seed-mediated and iodide-assisted synthesis of gold nanocrystals with systematic shape evolution from rhombic dodecahedral to octahedral structures. Chung PJ; Lyu LM; Huang MH Chemistry; 2011 Aug; 17(35):9746-52. PubMed ID: 21769954 [TBL] [Abstract][Full Text] [Related]
15. Shape control of cadmium hydroxides (Cd(OH)2) sensitive to pH quenching depth and massive production of CdSe nanocrystals by their chemical transformation. Ko S; Moon GD; Lee JP; Park S; Jeong U Nanotechnology; 2011 Aug; 22(31):315604. PubMed ID: 21737874 [TBL] [Abstract][Full Text] [Related]
16. Block copolymer-mediated synthesis of size-tunable gold nanospheres and nanoplates. Goy-López S; Castro E; Taboada P; Mosquera V Langmuir; 2008 Nov; 24(22):13186-96. PubMed ID: 18925755 [TBL] [Abstract][Full Text] [Related]
17. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. Niu W; Zheng S; Wang D; Liu X; Li H; Han S; Chen J; Tang Z; Xu G J Am Chem Soc; 2009 Jan; 131(2):697-703. PubMed ID: 19102696 [TBL] [Abstract][Full Text] [Related]
18. Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Chu HC; Kuo CH; Huang MH Inorg Chem; 2006 Jan; 45(2):808-13. PubMed ID: 16411718 [TBL] [Abstract][Full Text] [Related]
19. Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water. Li H; Xia H; Wang D; Tao X Langmuir; 2013 Apr; 29(16):5074-9. PubMed ID: 23578217 [TBL] [Abstract][Full Text] [Related]
20. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Okitsu K; Sharyo K; Nishimura R Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]