These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 17949122)
41. Theory and simulation of angular hysteresis on planar surfaces. Santos MJ; White JA Langmuir; 2011 Dec; 27(24):14868-75. PubMed ID: 22050087 [TBL] [Abstract][Full Text] [Related]
42. Line energy and the relation between advancing, receding, and young contact angles. Tadmor R Langmuir; 2004 Aug; 20(18):7659-64. PubMed ID: 15323516 [TBL] [Abstract][Full Text] [Related]
43. Wetting behaviors of individual nanostructures. Wong TS; Huang AP; Ho CM Langmuir; 2009 Jun; 25(12):6599-603. PubMed ID: 19459591 [TBL] [Abstract][Full Text] [Related]
44. The effect of contact angle hysteresis on droplet coalescence and mixing. Nilsson MA; Rothstein JP J Colloid Interface Sci; 2011 Nov; 363(2):646-54. PubMed ID: 21855081 [TBL] [Abstract][Full Text] [Related]
45. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer. Wang L; Wei J; Su Z Langmuir; 2011 Dec; 27(24):15299-304. PubMed ID: 22044032 [TBL] [Abstract][Full Text] [Related]
46. Water contact angles and hysteresis of polyamide surfaces. Extrand CW J Colloid Interface Sci; 2002 Apr; 248(1):136-42. PubMed ID: 16290514 [TBL] [Abstract][Full Text] [Related]
47. Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range. Spori DM; Drobek T; Zürcher S; Ochsner M; Sprecher C; Mühlebach A; Spencer ND Langmuir; 2008 May; 24(10):5411-7. PubMed ID: 18442274 [TBL] [Abstract][Full Text] [Related]
48. An evaluation of methods for contact angle measurement. Krishnan A; Liu YH; Cha P; Woodward R; Allara D; Vogler EA; Colloids Surf B Biointerfaces; 2005 Jun; 43(2):95-8. PubMed ID: 15922578 [TBL] [Abstract][Full Text] [Related]
49. Reliable measurement of the receding contact angle. Korhonen JT; Huhtamäki T; Ikkala O; Ras RH Langmuir; 2013 Mar; 29(12):3858-63. PubMed ID: 23451825 [TBL] [Abstract][Full Text] [Related]
50. Wetting behavior and drainage of water droplets on microgrooved brass surfaces. Rahman MA; Jacobi AM Langmuir; 2012 Sep; 28(37):13441-51. PubMed ID: 22909187 [TBL] [Abstract][Full Text] [Related]
51. A generalized analysis of capillary flows in channels. Xiao Y; Yang F; Pitchumani R J Colloid Interface Sci; 2006 Jun; 298(2):880-8. PubMed ID: 16480736 [TBL] [Abstract][Full Text] [Related]
52. Asymmetric wetting of patterned surfaces composed of intrinsically hysteretic materials. Anantharaju N; Panchagnula MV; Vedantam S Langmuir; 2009 Jul; 25(13):7410-5. PubMed ID: 19405481 [TBL] [Abstract][Full Text] [Related]
54. A refractive tilting-plate technique for measurement of dynamic contact angles. Smedley GT; Coles DE J Colloid Interface Sci; 2005 Jun; 286(1):310-8. PubMed ID: 15848433 [TBL] [Abstract][Full Text] [Related]
55. Macroscopic theory for capillary-pressure hysteresis. Athukorallage B; Aulisa E; Iyer R; Zhang L Langmuir; 2015 Mar; 31(8):2390-7. PubMed ID: 25646688 [TBL] [Abstract][Full Text] [Related]
56. Applicability of Washburn capillary rise for determining contact angles of powders/porous materials. Kirdponpattara S; Phisalaphong M; Newby BM J Colloid Interface Sci; 2013 May; 397():169-76. PubMed ID: 23484765 [TBL] [Abstract][Full Text] [Related]
57. Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls. Kuchin IV; Starov VM Langmuir; 2016 May; 32(21):5333-40. PubMed ID: 27163285 [TBL] [Abstract][Full Text] [Related]