These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17949137)

  • 1. Umbrella sampling for nonequilibrium processes.
    Warmflash A; Bhimalapuram P; Dinner AR
    J Chem Phys; 2007 Oct; 127(15):154112. PubMed ID: 17949137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density.
    Attard P
    J Chem Phys; 2006 Jun; 124(22):224103. PubMed ID: 16784259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separating forward and backward pathways in nonequilibrium umbrella sampling.
    Dickson A; Warmflash A; Dinner AR
    J Chem Phys; 2009 Oct; 131(15):154104. PubMed ID: 20568844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium umbrella sampling in spaces of many order parameters.
    Dickson A; Warmflash A; Dinner AR
    J Chem Phys; 2009 Feb; 130(7):074104. PubMed ID: 19239281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating rare events in equilibrium or nonequilibrium stochastic systems.
    Allen RJ; Frenkel D; ten Wolde PR
    J Chem Phys; 2006 Jan; 124(2):024102. PubMed ID: 16422566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sampling of nonequilibrium steady states.
    Dickson A; Dinner AR
    Annu Rev Phys Chem; 2010; 61():441-59. PubMed ID: 20367083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic potential switching algorithm for Monte Carlo simulations of complex systems.
    Mak CH
    J Chem Phys; 2005 Jun; 122(21):214110. PubMed ID: 15974731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-stationary forward flux sampling.
    Becker NB; Allen RJ; ten Wolde PR
    J Chem Phys; 2012 May; 136(17):174118. PubMed ID: 22583221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of Markov chain Monte Carlo simulations through sequential updating.
    Ren R; Orkoulas G
    J Chem Phys; 2006 Feb; 124(6):64109. PubMed ID: 16483198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm.
    Samant A; Vlachos DG
    J Chem Phys; 2005 Oct; 123(14):144114. PubMed ID: 16238381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical mechanical theory for the structure of steady state systems: application to a Lennard-Jones fluid with applied temperature gradient.
    Attard P
    J Chem Phys; 2004 Oct; 121(15):7076-85. PubMed ID: 15473773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the kinetics and thermodynamics of transitions via forward flux/umbrella sampling.
    Borrero EE; Escobedo FA
    J Phys Chem B; 2009 May; 113(18):6434-45. PubMed ID: 19402728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing subglass relaxation in polymers via a geometric representation of probabilities, observables, and relaxation modes for discrete stochastic systems.
    Boulougouris GC; Theodorou DN
    J Chem Phys; 2009 Jan; 130(4):044905. PubMed ID: 19191411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical mechanical theory for steady state systems. IV. Transition probability and simulation algorithm demonstrated for heat flow.
    Attard P
    J Chem Phys; 2006 Jan; 124(2):024109. PubMed ID: 16422573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium dynamics and umbrella sampling.
    Williams SR; Evans DJ
    Phys Rev Lett; 2010 Sep; 105(11):110601. PubMed ID: 20867558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations.
    Okumura H
    J Chem Phys; 2008 Sep; 129(12):124116. PubMed ID: 19045015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A divide-and-conquer strategy to improve diffusion sampling in generalized ensemble simulations.
    Min D; Yang W
    J Chem Phys; 2008 Mar; 128(9):094106. PubMed ID: 18331086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Markov transition matrix method: obtaining the stationary probability distribution from multiple simulations.
    Sakuraba S; Kitao A
    J Comput Chem; 2009 Sep; 30(12):1850-8. PubMed ID: 19090573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cluster algorithm for Monte Carlo simulation at constant pressure.
    Almarza NG
    J Chem Phys; 2009 May; 130(18):184106. PubMed ID: 19449907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation processes with memory.
    Zhukov AV; Kim SW; George TF
    J Phys Chem A; 2008 Apr; 112(13):2794-802. PubMed ID: 18303872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.