These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 17949171)

  • 41. Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms.
    Malasics A; Gillespie D; Boda D
    J Chem Phys; 2008 Mar; 128(12):124102. PubMed ID: 18376903
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The self-referential method for linear rigid bodies: application to hard and Lennard-Jones dumbbells.
    Sweatman MB; Atamas A; Leyssale JM
    J Chem Phys; 2009 Jan; 130(2):024101. PubMed ID: 19154013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of surface chemical heterogeneities on adsorption/desorption hysteresis and coexistence diagram of metastable states within cylindrical pores.
    Puibasset J
    J Chem Phys; 2006 Aug; 125(7):074707. PubMed ID: 16942364
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metastable extension of the liquid-vapor phase equilibrium curve and surface tension.
    Baidakov VG; Protsenko SP; Kozlova ZR; Chernykh GG
    J Chem Phys; 2007 Jun; 126(21):214505. PubMed ID: 17567206
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adsorption of ethylene on graphitized thermal carbon black and in slit pores: a computer simulation study.
    Do DD; Do HD
    Langmuir; 2004 Aug; 20(17):7103-16. PubMed ID: 15301494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metastable Lennard-Jones fluids. I. Shear viscosity.
    Baidakov VG; Protsenko SP; Kozlova ZR
    J Chem Phys; 2012 Oct; 137(16):164507. PubMed ID: 23126730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Capillary Condensation in Pores with Energetically Heterogeneous Walls: Density Functional versus Monte Carlo Calculations.
    Reszko-Zygmunt J; Pizio O; Rzysko W; Sokolowski S; Sokolowska Z
    J Colloid Interface Sci; 2001 Sep; 241(1):169-177. PubMed ID: 11502119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical potential perturbation: a method to predict chemical potentials in periodic molecular simulations.
    Moore SG; Wheeler DR
    J Chem Phys; 2011 Mar; 134(11):114514. PubMed ID: 21428639
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular-dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble.
    Kraska T
    J Chem Phys; 2006 Feb; 124(5):054507. PubMed ID: 16468894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metastable Lennard-Jones fluids. III. Bulk viscosity.
    Baidakov VG; Protsenko SP
    J Chem Phys; 2014 Sep; 141(11):114503. PubMed ID: 25240360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulations of vapor water clusters at vapor-liquid equilibrium.
    Johansson E; Bolton K; Ahlström P
    J Chem Phys; 2005 Jul; 123(2):24504. PubMed ID: 16050756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular simulations of aqueous electrolyte solubility: 1. The expanded-ensemble osmotic molecular dynamics method for the solution phase.
    Lísal M; Smith WR; Kolafa J
    J Phys Chem B; 2005 Jul; 109(26):12956-65. PubMed ID: 16852608
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface tension of associating fluids by Monte Carlo simulations.
    Tapia-Medina C; Orea P; Mier-Y-Teran L; Alejandre J
    J Chem Phys; 2004 Feb; 120(5):2337-42. PubMed ID: 15268372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multicanonical schemes for mapping out free-energy landscapes of single-component and multicomponent systems.
    Gospodinov ID; Escobedo FA
    J Chem Phys; 2005 Apr; 122(16):164103. PubMed ID: 15945668
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measuring coexisting densities from a two-phase molecular dynamics simulation by voronoi tessellations.
    Fern JT; Keffer DJ; Steele WV
    J Phys Chem B; 2007 Apr; 111(13):3469-75. PubMed ID: 17388481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Revisiting the Frenkel-Ladd method to compute the free energy of solids: the Einstein molecule approach.
    Vega C; Noya EG
    J Chem Phys; 2007 Oct; 127(15):154113. PubMed ID: 17949138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phase coexistence in heterogeneous porous media: a new extension to Gibbs ensemble Monte Carlo simulation method.
    Puibasset J
    J Chem Phys; 2005 Apr; 122(13):134710. PubMed ID: 15847492
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NMR relaxation parameters of a Lennard-Jones fluid from molecular-dynamics simulations.
    Grivet JP
    J Chem Phys; 2005 Jul; 123(3):34503. PubMed ID: 16080740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: development and implementation of the continuous fractional component move.
    Shi W; Maginn EJ
    J Comput Chem; 2008 Nov; 29(15):2520-30. PubMed ID: 18478586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of excess adsorption, solvation force, and plate-fluid interfacial tension for Lennard-Jones fluid confined in slit pores.
    Fu D
    J Chem Phys; 2006 Apr; 124(16):164701. PubMed ID: 16674151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.