BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17949437)

  • 1. Glycation damage targets glutamate dehydrogenase in the rat liver mitochondrial matrix during aging.
    Hamelin M; Mary J; Vostry M; Friguet B; Bakala H
    FEBS J; 2007 Nov; 274(22):5949-61. PubMed ID: 17949437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression and glycative damage affect specific mitochondrial proteins with aging in rat liver.
    Bakala H; Ladouce R; Baraibar MA; Friguet B
    Biochim Biophys Acta; 2013 Dec; 1832(12):2057-67. PubMed ID: 23906978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycation-induced inactivation of NADP(+)-dependent isocitrate dehydrogenase: implications for diabetes and aging.
    Kil IS; Lee JH; Shin AH; Park JW
    Free Radic Biol Med; 2004 Dec; 37(11):1765-78. PubMed ID: 15528036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalase, a target of glycation damage in rat liver mitochondria with aging.
    Bakala H; Hamelin M; Mary J; Borot-Laloi C; Friguet B
    Biochim Biophys Acta; 2012 Oct; 1822(10):1527-34. PubMed ID: 22683338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malonaldehyde acts as a mitochondrial toxin: Inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria.
    Long J; Wang X; Gao H; Liu Z; Liu C; Miao M; Liu J
    Life Sci; 2006 Sep; 79(15):1466-72. PubMed ID: 16737718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of preferential protein targets for age-related modifications in peripheral blood lymphocytes.
    Poggioli S; Mary J; Bakala H; Friguet B
    Ann N Y Acad Sci; 2004 Jun; 1019():211-4. PubMed ID: 15247016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging.
    Bulteau AL; Szweda LI; Friguet B
    Exp Gerontol; 2006 Jul; 41(7):653-7. PubMed ID: 16677792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption.
    Venkatraman A; Landar A; Davis AJ; Ulasova E; Page G; Murphy MP; Darley-Usmar V; Bailey SM
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G521-7. PubMed ID: 14670822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomic analysis of brains of naturally aging mice.
    Yang S; Liu T; Li S; Zhang X; Ding Q; Que H; Yan X; Wei K; Liu S
    Neuroscience; 2008 Jun; 154(3):1107-20. PubMed ID: 18495355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of carbonyl-modified proteins in interfibrillar rat mitochondria using N'-aminooxymethylcarbonylhydrazino-D-biotin as an aldehyde/keto-reactive probe in combination with Western blot analysis and tandem mass spectrometry.
    Chung WG; Miranda CL; Maier CS
    Electrophoresis; 2008 Mar; 29(6):1317-24. PubMed ID: 18348219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate dehydrogenase covalently binds to a reactive metabolite of acetaminophen.
    Halmes NC; Hinson JA; Martin BM; Pumford NR
    Chem Res Toxicol; 1996 Mar; 9(2):541-6. PubMed ID: 8839060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts.
    Ahmed EK; Rogowska-Wrzesinska A; Roepstorff P; Bulteau AL; Friguet B
    Aging Cell; 2010 Apr; 9(2):252-72. PubMed ID: 20102351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic profiling of aging in the mouse heart: Altered expression of mitochondrial proteins.
    Chakravarti B; Oseguera M; Dalal N; Fathy P; Mallik B; Raval A; Chakravarti DN
    Arch Biochem Biophys; 2008 Jun; 474(1):22-31. PubMed ID: 18284913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.
    Schlicker C; Gertz M; Papatheodorou P; Kachholz B; Becker CF; Steegborn C
    J Mol Biol; 2008 Oct; 382(3):790-801. PubMed ID: 18680753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometry-based survey of age-associated protein carbonylation in rat brain mitochondria.
    Prokai L; Yan LJ; Vera-Serrano JL; Stevens SM; Forster MJ
    J Mass Spectrom; 2007 Dec; 42(12):1583-9. PubMed ID: 18085547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regulation of rat liver mitochondrial glutamate dehydrogenase by adenosine diphosphate and progesterone].
    Khillar M
    Biokhimiia; 1973; 38(3):548-51. PubMed ID: 4780952
    [No Abstract]   [Full Text] [Related]  

  • 18. Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats.
    Meng C; Jin X; Xia L; Shen SM; Wang XL; Cai J; Chen GQ; Wang LS; Fang NY
    J Proteome Res; 2009 May; 8(5):2463-75. PubMed ID: 19265432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of human glutamate dehydrogenase regulation under changing energy demands.
    Mastorodemos V; Zaganas I; Spanaki C; Bessa M; Plaitakis A
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):65-73. PubMed ID: 15578726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a 54-kDa mitochondrial acetaminophen-binding protein as aldehyde dehydrogenase.
    Landin JS; Cohen SD; Khairallah EA
    Toxicol Appl Pharmacol; 1996 Nov; 141(1):299-307. PubMed ID: 8917703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.