BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17949679)

  • 1. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins.
    Wehbi H; Gasmi-Seabrook G; Choi MY; Deber CM
    Biochim Biophys Acta; 2008 Jan; 1778(1):79-87. PubMed ID: 17949679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2014 Mar; 88(1):46-57. PubMed ID: 24412276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar residues in membrane domains of proteins: molecular basis for helix-helix association in a mutant CFTR transmembrane segment.
    Partridge AW; Melnyk RA; Deber CM
    Biochemistry; 2002 Mar; 41(11):3647-53. PubMed ID: 11888281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H; Rath A; Glibowicka M; Deber CM
    Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides.
    Mulvihill CM; Deber CM
    Biochim Biophys Acta; 2012 Jan; 1818(1):49-54. PubMed ID: 21996038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural effects of extracellular loop mutations in CFTR helical hairpins.
    Chang YH; Stone TA; Chin S; Glibowicka M; Bear CE; Deber CM
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1092-1098. PubMed ID: 29307731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interhelical hydrogen bonds in the CFTR membrane domain.
    Therien AG; Grant FE; Deber CM
    Nat Struct Biol; 2001 Jul; 8(7):597-601. PubMed ID: 11427889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor.
    Krainer G; Schenkel M; Hartmann A; Ravamehr-Lake D; Deber CM; Schlierf M
    J Biol Chem; 2020 Feb; 295(7):1985-1991. PubMed ID: 31882543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop sequence dictates the secondary structure of a human membrane protein hairpin.
    Nadeau VG; Deber CM
    Biochemistry; 2013 Apr; 52(14):2419-26. PubMed ID: 23488803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of cholesterol and Lumacaftor on the folding of CFTR helical hairpins.
    Schenkel M; Ravamehr-Lake D; Czerniak T; Saenz JP; Krainer G; Schlierf M; Deber CM
    Biochim Biophys Acta Biomembr; 2023 Jan; 1865(1):184078. PubMed ID: 36279907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6.
    Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ
    Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
    Chen EY; Bartlett MC; Loo TW; Clarke DM
    J Biol Chem; 2004 Sep; 279(38):39620-7. PubMed ID: 15272010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interhelical packing in detergent micelles. Folding of a cystic fibrosis transmembrane conductance regulator construct.
    Therien AG; Deber CM
    J Biol Chem; 2002 Feb; 277(8):6067-72. PubMed ID: 11748233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA; Ko YH; Pedersen PL; Mildvan AS
    Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of de novo membrane insertion activities of internal transmembrane segments of ATP-binding-cassette transporters: toward understanding topological rules for membrane assembly of polytopic membrane proteins.
    Zhang JT; Chen M; Han E; Wang C
    Mol Biol Cell; 1998 Apr; 9(4):853-63. PubMed ID: 9529383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.
    Rath A; Glibowicka M; Nadeau VG; Chen G; Deber CM
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1760-5. PubMed ID: 19181854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystic fibrosis transmembrane conductance regulator: expression and helicity of a double membrane-spanning segment.
    Peng S; Liu LP; Emili AQ; Deber CM
    FEBS Lett; 1998 Jul; 431(1):29-33. PubMed ID: 9684859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.