These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17949726)

  • 41. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trabecular shear stress in human vertebral cancellous bone: intra- and inter-individual variations.
    Yeni YN; Hou FJ; Vashishth D; Fyhrie DP
    J Biomech; 2001 Oct; 34(10):1341-6. PubMed ID: 11522314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationships between structure, density and strength of human trabecular bone.
    Mazurkiewicz A; Topoliński T
    Acta Bioeng Biomech; 2009; 11(4):55-61. PubMed ID: 20405816
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur.
    Vahey JW; Lewis JL; Vanderby R
    J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative relationships between microdamage and cancellous bone strength and stiffness.
    Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM
    Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of mechanical properties of cortical bone by quantitative computed tomography.
    Duchemin L; Bousson V; Raossanaly C; Bergot C; Laredo JD; Skalli W; Mitton D
    Med Eng Phys; 2008 Apr; 30(3):321-8. PubMed ID: 17596993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strain distribution in the proximal human femoral metaphysis.
    Cristofolini L; Juszczyk M; Taddei F; Viceconti M
    Proc Inst Mech Eng H; 2009 Apr; 223(3):273-88. PubMed ID: 19405434
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of mechanical properties of the cancellous bone of the mandibular condyle.
    van Ruijven LJ; Giesen EB; Farella M; van Eijden TM
    J Dent Res; 2003 Oct; 82(10):819-23. PubMed ID: 14514763
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Association between collagen cross-links and trabecular microarchitecture properties of human vertebral bone.
    Viguet-Carrin S; Follet H; Gineyts E; Roux JP; Munoz F; Chapurlat R; Delmas PD; Bouxsein ML
    Bone; 2010 Feb; 46(2):342-7. PubMed ID: 19836004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gender specific LRP5 influences on trabecular bone structure and strength.
    Dubrow SA; Hruby PM; Akhter MP
    J Musculoskelet Neuronal Interact; 2007; 7(2):166-73. PubMed ID: 17627087
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Smooth surface micro finite element modelling of a cancellous bone analogue material.
    Leung SY; Browne M; New AM
    Proc Inst Mech Eng H; 2008 Jan; 222(1):145-9. PubMed ID: 18335725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Measurement of the elastic properties of the cancellous bone in the femoral head of the dog].
    Behrens BA; Nolte I; Bouguecha A; Kammler M; Halbritter U; Besdo S; Meyer-Lindenberg A
    Berl Munch Tierarztl Wochenschr; 2005; 118(3-4):160-3. PubMed ID: 15803764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength.
    Hernandez CJ; Gupta A; Keaveny TM
    J Bone Miner Res; 2006 Aug; 21(8):1248-55. PubMed ID: 16869723
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.
    Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B
    Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius.
    Pistoia W; van Rietbergen B; Rüegsegger P
    Bone; 2003 Dec; 33(6):937-45. PubMed ID: 14678853
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative left-right mechanical testing of cancellous bone from normal femoral heads.
    Banse X; Delloye C; Cornu O; Bourgois R
    J Biomech; 1996 Oct; 29(10):1247-53. PubMed ID: 8884470
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human vertebral body apparent and hard tissue stiffness.
    Hou FJ; Lang SM; Hoshaw SJ; Reimann DA; Fyhrie DP
    J Biomech; 1998 Nov; 31(11):1009-15. PubMed ID: 9880057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.