These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 1794996)
21. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes. Zhang T; Song Z; Chen H; Yu X; Jiang Z J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962 [TBL] [Abstract][Full Text] [Related]
22. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Loh XJ; Colin Sng KB; Li J Biomaterials; 2008 Aug; 29(22):3185-94. PubMed ID: 18456319 [TBL] [Abstract][Full Text] [Related]
23. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications. Sarkar D; Yang JC; Gupta AS; Lopina ST J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels. Goraltchouk A; Freier T; Shoichet MS Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955 [TBL] [Abstract][Full Text] [Related]
25. Liquid photocurable biodegradable copolymers: in vivo degradation of photocured poly(epsilon-caprolactone-co-trimethylene carbonate). Mizutani M; Matsuda T J Biomed Mater Res; 2002 Jul; 61(1):53-60. PubMed ID: 12001246 [TBL] [Abstract][Full Text] [Related]
26. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Gorna K; Gogolewski S J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229 [TBL] [Abstract][Full Text] [Related]
28. Biodegradable and thermoreversible hydrogels of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions. Jiang Z; Hao J; You Y; Liu Y; Wang Z; Deng X J Biomed Mater Res A; 2008 Oct; 87(1):45-51. PubMed ID: 18080306 [TBL] [Abstract][Full Text] [Related]
29. Degradable polyesters through chain linking for packaging and biomedical applications. Seppälä JV; Helminen AO; Korhonen H Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210 [TBL] [Abstract][Full Text] [Related]
30. In vitro degradation and biocompatibility of poly(DL-lactide-epsilon-caprolactone) nerve guides. Meek MF; Jansen K; Steendam R; van Oeveren W; van Wachem PB; van Luyn MJ J Biomed Mater Res A; 2004 Jan; 68(1):43-51. PubMed ID: 14661248 [TBL] [Abstract][Full Text] [Related]
31. The Trimerization of Isocyanate-Functionalized Prepolymers: An Effective Method for Synthesizing Well-Defined Polymer Networks. Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW Macromol Rapid Commun; 2019 May; 40(9):e1800867. PubMed ID: 30817042 [TBL] [Abstract][Full Text] [Related]
33. Thermoresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced self-assembly, biocompatibility, and hydrolytic degradation. Wang YC; Tang LY; Li Y; Wang J Biomacromolecules; 2009 Jan; 10(1):66-73. PubMed ID: 19133835 [TBL] [Abstract][Full Text] [Related]
34. Surface property and in vitro biodegradation of microspheres fabricated by poly(epsilon-caprolactone-b-ethylene oxide) diblock copolymers. Yu G; Zhang Y; Shi X; Li Z; Gan Z J Biomed Mater Res A; 2008 Mar; 84(4):926-39. PubMed ID: 17647229 [TBL] [Abstract][Full Text] [Related]
35. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. Lligadas G; Ronda JC; Galià M; Cádiz V Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093 [TBL] [Abstract][Full Text] [Related]
36. Heparinizable segmented polyurethanes containing poly-amidoamine blocks. Tanzi MC; Levi M J Biomed Mater Res; 1989 Aug; 23(8):863-81. PubMed ID: 2777830 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Alishiri M; Shojaei A; Abdekhodaie MJ; Yeganeh H Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():763-73. PubMed ID: 25063178 [TBL] [Abstract][Full Text] [Related]
38. Synthesis of biodegradable polymers using biocatalysis with Yarrowia lipolytica lipase. Barrera-Rivera KA; Flores-Carreón A; Martínez-Richa A Methods Mol Biol; 2012; 861():485-93. PubMed ID: 22426736 [TBL] [Abstract][Full Text] [Related]
39. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization. Chen Z; Cheng S; Li Z; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282 [TBL] [Abstract][Full Text] [Related]
40. Synthesis of novel cholic acid functionalized branched oligo/poly(epsilon-caprolactone)s for biomedical applications. Fu HL; Yu L; Zhang H; Zhang XZ; Cheng SX; Zhuo RX J Biomed Mater Res A; 2007 Apr; 81(1):186-94. PubMed ID: 17120203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]