BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17950010)

  • 1. GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans.
    Liao WL; Ramón AM; Fonzi WA
    Fungal Genet Biol; 2008 Apr; 45(4):514-26. PubMed ID: 17950010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of ammonium permease expression and filamentous growth by the GATA transcription factors GLN3 and GAT1 in Candida albicans.
    Dabas N; Morschhäuser J
    Eukaryot Cell; 2007 May; 6(5):875-88. PubMed ID: 17369441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen regulation of morphogenesis and protease secretion in Candida albicans.
    Morschhäuser J
    Int J Med Microbiol; 2011 Jun; 301(5):390-4. PubMed ID: 21555241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1.
    Limjindaporn T; Khalaf RA; Fonzi WA
    Mol Microbiol; 2003 Nov; 50(3):993-1004. PubMed ID: 14617156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae.
    Georis I; Tate JJ; Cooper TG; Dubois E
    J Biol Chem; 2008 Apr; 283(14):8919-29. PubMed ID: 18245087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans.
    Kmetzsch L; Staats CC; Simon E; Fonseca FL; Oliveira DL; Joffe LS; Rodrigues J; Lourenço RF; Gomes SL; Nimrichter L; Rodrigues ML; Schrank A; Vainstein MH
    Fungal Genet Biol; 2011 Feb; 48(2):192-9. PubMed ID: 20673806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gln3 is a main regulator of nitrogen assimilation in Candida glabrata.
    Pérez-Delos Santos FJ; Riego-Ruiz L
    Microbiology (Reading); 2016 Aug; 162(8):1490-1499. PubMed ID: 27222014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine.
    Georis I; Tate JJ; Cooper TG; Dubois E
    J Biol Chem; 2011 Dec; 286(52):44897-912. PubMed ID: 22039046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans.
    Lee IR; Chow EW; Morrow CA; Djordjevic JT; Fraser JA
    Genetics; 2011 Jun; 188(2):309-23. PubMed ID: 21441208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in
    Pérez-de Los Santos FJ; García-Ortega LF; Robledo-Márquez K; Guzmán-Moreno J; Riego-Ruiz L
    J Microbiol Biotechnol; 2021 May; 31(5):659-666. PubMed ID: 33879640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.
    Tate JJ; Rai R; Cooper TG
    Genetics; 2015 Feb; 199(2):455-74. PubMed ID: 25527290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2.
    Navarathna DHMLP; Das A; Morschhäuser J; Nickerson KW; Roberts DD
    Microbiology (Reading); 2011 Jan; 157(Pt 1):270-279. PubMed ID: 20884691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms.
    Rai R; Tate JJ; Georis I; Dubois E; Cooper TG
    J Biol Chem; 2014 Jan; 289(5):2918-33. PubMed ID: 24324255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae.
    Tate JJ; Georis I; Dubois E; Cooper TG
    J Biol Chem; 2010 Jun; 285(23):17880-95. PubMed ID: 20378536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast.
    Georis I; Tate JJ; Feller A; Cooper TG; Dubois E
    Mol Cell Biol; 2011 Jan; 31(1):92-104. PubMed ID: 20974806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.
    Tate JJ; Buford D; Rai R; Cooper TG
    Genetics; 2017 Feb; 205(2):633-655. PubMed ID: 28007891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.
    Feller A; Georis I; Tate JJ; Cooper TG; Dubois E
    J Biol Chem; 2013 Jan; 288(3):1841-55. PubMed ID: 23184930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term.
    Scherens B; Feller A; Vierendeels F; Messenguy F; Dubois E
    FEMS Yeast Res; 2006 Aug; 6(5):777-91. PubMed ID: 16879428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Npr1 kinase in ammonium transport and signaling by the ammonium permease Mep2 in Candida albicans.
    Neuhäuser B; Dunkel N; Satheesh SV; Morschhäuser J
    Eukaryot Cell; 2011 Mar; 10(3):332-42. PubMed ID: 21278231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae.
    Kulkarni A; Buford TD; Rai R; Cooper TG
    FEMS Yeast Res; 2006 Mar; 6(2):218-29. PubMed ID: 16487345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.