BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 17950280)

  • 1. Stem cells for the treatment of spinal cord injury.
    Coutts M; Keirstead HS
    Exp Neurol; 2008 Feb; 209(2):368-77. PubMed ID: 17950280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stem cells: Current approach and future prospects in spinal cord injury repair.
    Zhang N; Wimmer J; Qian SJ; Chen WS
    Anat Rec (Hoboken); 2010 Mar; 293(3):519-30. PubMed ID: 19937641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated spinal cord ependymal stem cells rescue neurological function.
    Moreno-Manzano V; Rodríguez-Jiménez FJ; García-Roselló M; Laínez S; Erceg S; Calvo MT; Ronaghi M; Lloret M; Planells-Cases R; Sánchez-Puelles JM; Stojkovic M
    Stem Cells; 2009 Mar; 27(3):733-43. PubMed ID: 19259940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients.
    Moviglia GA; Fernandez Viña R; Brizuela JA; Saslavsky J; Vrsalovic F; Varela G; Bastos F; Farina P; Etchegaray G; Barbieri M; Martinez G; Picasso F; Schmidt Y; Brizuela P; Gaeta CA; Costanzo H; Moviglia Brandolino MT; Merino S; Pes ME; Veloso MJ; Rugilo C; Tamer I; Shuster GS
    Cytotherapy; 2006; 8(3):202-9. PubMed ID: 16793729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration-based therapies for spinal cord injuries.
    Okano H; Kaneko S; Okada S; Iwanami A; Nakamura M; Toyama Y
    Neurochem Int; 2007; 51(2-4):68-73. PubMed ID: 17544171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem cells and spinal cord regeneration.
    Rossi SL; Keirstead HS
    Curr Opin Biotechnol; 2009 Oct; 20(5):552-62. PubMed ID: 19836942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal repair and replacement in spinal cord injury.
    Bareyre FM
    J Neurol Sci; 2008 Feb; 265(1-2):63-72. PubMed ID: 17568612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury.
    Faulkner J; Keirstead HS
    Transpl Immunol; 2005 Dec; 15(2):131-42. PubMed ID: 16412957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?
    Ronaghi M; Erceg S; Moreno-Manzano V; Stojkovic M
    Stem Cells; 2010 Jan; 28(1):93-9. PubMed ID: 19904738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells.
    Pan HC; Cheng FC; Lai SZ; Yang DY; Wang YC; Lee MS
    J Clin Neurosci; 2008 Jun; 15(6):656-64. PubMed ID: 18406145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are induced pluripotent stem cells the future of cell-based regenerative therapies for spinal cord injury?
    Salewski RP; Eftekharpour E; Fehlings MG
    J Cell Physiol; 2010 Mar; 222(3):515-21. PubMed ID: 20020443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential roles of the neural stem cell in the restoration of the injured spinal cord: review of the literature.
    Kabatas S; Teng YD
    Turk Neurosurg; 2010 Apr; 20(2):103-10. PubMed ID: 20401836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury.
    Lee SI; Kim BG; Hwang DH; Kim HM; Kim SU
    J Neurosci Res; 2009 Nov; 87(14):3186-97. PubMed ID: 19530162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Status and application prospect in repair of spinal cord injury by stem cells].
    Wang L; Wang J; Lu K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Mar; 23(3):353-7. PubMed ID: 19366153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury.
    Lowry N; Goderie SK; Adamo M; Lederman P; Charniga C; Gill J; Silver J; Temple S
    Exp Neurol; 2008 Feb; 209(2):510-22. PubMed ID: 18029281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury.
    Myckatyn TM; Mackinnon SE; McDonald JW
    Transpl Immunol; 2004 Apr; 12(3-4):343-58. PubMed ID: 15157926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem cells in the injured spinal cord: reducing the pain and increasing the gain.
    Klein S; Svendsen CN
    Nat Neurosci; 2005 Mar; 8(3):259-60. PubMed ID: 15746908
    [No Abstract]   [Full Text] [Related]  

  • 19. The use of stem cells' hematopoietic stimulating factors therapy following spinal cord injury.
    Divani AA; Hussain MS; Magal E; Heary RF; Qureshi AI
    Ann Biomed Eng; 2007 Oct; 35(10):1647-56. PubMed ID: 17641973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury.
    Cao FJ; Feng SQ
    Chin Med J (Engl); 2009 Jan; 122(2):225-31. PubMed ID: 19187651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.