These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1795054)

  • 1. Histological evaluation of biodegradable and non-degradable membranes placed transcutaneously in rats.
    Galgut P; Pitrola R; Waite I; Doyle C; Smith R
    J Clin Periodontol; 1991 Sep; 18(8):581-6. PubMed ID: 1795054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue reactions to biodegradable and non-degradable membranes placed transcutaneously in rats, observed longitudinally over a period of 4 weeks.
    Galgut P; Waite I; Smith R
    J Oral Rehabil; 1996 Jan; 23(1):17-21. PubMed ID: 8850156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone regeneration by the osteopromotion technique using bioabsorbable membranes: an experimental study in rats.
    Sandberg E; Dahlin C; Linde A
    J Oral Maxillofac Surg; 1993 Oct; 51(10):1106-14. PubMed ID: 8410448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guided tissue regeneration using biodegradable membranes of polylactic acid or polyurethane.
    Warrer K; Karring T; Nyman S; Gogolewski S
    J Clin Periodontol; 1992 Oct; 19(9 Pt 1):633-40. PubMed ID: 1430291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guided tissue regeneration: comparison of bioabsorbable and non-bioabsorbable membranes. Histologic and histometric study in dogs.
    Caffesse RG; Nasjleti CE; Morrison EC; Sanchez R
    J Periodontol; 1994 Jun; 65(6):583-91. PubMed ID: 8083790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Healing of mandibular defects with different biodegradable and non-biodegradable membranes: an experimental study in rats.
    Zellin G; Gritli-Linde A; Linde A
    Biomaterials; 1995 May; 16(8):601-9. PubMed ID: 7548610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly-(L-lactic) acid membranes in palatal surgery in beagle dogs: clinical and histologic evaluation.
    In de Braekt MM; Maltha JC; Kuijpers-Jagtman AM
    Cleft Palate Craniofac J; 1995 Jul; 32(4):290-8. PubMed ID: 7548101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New attachment formation following controlled tissue regeneration using biodegradable membranes.
    Magnusson I; Batich C; Collins BR
    J Periodontol; 1988 Jan; 59(1):1-6. PubMed ID: 3422287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of bioabsorbable and non-resorbable membranes in the treatment of dehiscence-type defects. A histomorphometric study in dogs.
    da Silva Pereira SL; Sallum AW; Casati MZ; Caffesse RG; Weng D; Nociti FH; Sallum EA
    J Periodontol; 2000 Aug; 71(8):1306-14. PubMed ID: 10972646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the design of two different bioresorbable barriers on the results of guided tissue regeneration therapy. An intra-individual comparative study in the monkey.
    Lundgren D; Laurell L; Gottlow J; Rylander H; Mathisen T; Nyman S; Rask M
    J Periodontol; 1995 Jul; 66(7):605-12. PubMed ID: 7562353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats.
    Zhao S; Pinholt EM; Madsen JE; Donath K
    J Craniomaxillofac Surg; 2000 Apr; 28(2):116-22. PubMed ID: 10958425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodontal guided tissue regeneration with a new resorbable polylactic acid membrane.
    Robert PM; Frank RM
    J Periodontol; 1994 May; 65(5):414-22. PubMed ID: 8046556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the potential of a polylactic acid barrier for correction of periodontal defects in baboons: a clinical and histologic study.
    Vernino AR; Jones FL; Holt RA; Nordquist RE; Brand JW
    Int J Periodontics Restorative Dent; 1995 Feb; 15(1):84-101. PubMed ID: 7591526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of tissue response to polyglecaprone 25, polyglactin 910 and polytetrafluorethylene suture materials in rats.
    Nary Filho H; Matsumoto MA; Batista AC; Lopes LC; de Góes FC; Consolaro A
    Braz Dent J; 2002; 13(2):86-91. PubMed ID: 12238808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of high-density versus semipermeable PTFE membranes in an elderly experimental model.
    Marouf HA; El-Guindi HM
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2000 Feb; 89(2):164-70. PubMed ID: 10673651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study.
    Wang HL; Miyauchi M; Takata T
    J Periodontal Res; 2002 Oct; 37(5):340-4. PubMed ID: 12366856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental wound dressings of degradable PHA for skin defect repair.
    Shishatskaya EI; Nikolaeva ED; Vinogradova ON; Volova TG
    J Mater Sci Mater Med; 2016 Nov; 27(11):165. PubMed ID: 27655431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans.
    Simion M; Scarano A; Gionso L; Piattelli A
    Int J Oral Maxillofac Implants; 1996; 11(6):735-42. PubMed ID: 8990634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial adherence to polytetrafluoroethylene (PTFE) material.
    Grevstad HJ; Leknes KN
    Scand J Dent Res; 1992 Aug; 100(4):236-9. PubMed ID: 1439530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and resorbability of a polylactic acid membrane for periodontal guided tissue regeneration.
    Robert P; Mauduit J; Frank RM; Vert M
    Biomaterials; 1993 Apr; 14(5):353-8. PubMed ID: 8507778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.