These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 17950583)
41. Preparation of fluorescent organometallic porphyrin complex nanogels of controlled molecular structure via reverse-emulsion click chemistry. Fu GD; Jiang H; Yao F; Xu LQ; Ling J; Kang ET Macromol Rapid Commun; 2012 Sep; 33(18):1523-7. PubMed ID: 22786873 [TBL] [Abstract][Full Text] [Related]
42. Polymeric Nanogels with Tailorable Degradation Behavior. Chen Y; van Steenbergen MJ; Li D; van de Dikkenberg JB; Lammers T; van Nostrum CF; Metselaar JM; Hennink WE Macromol Biosci; 2016 Aug; 16(8):1122-37. PubMed ID: 27072198 [TBL] [Abstract][Full Text] [Related]
43. Intracellular delivery of DNA and enzyme in active form using degradable carbohydrate-based nanogels. Ahmed M; Narain R Mol Pharm; 2012 Nov; 9(11):3160-70. PubMed ID: 22970989 [TBL] [Abstract][Full Text] [Related]
44. Self-assembled cationic nanogels for intracellular protein delivery. Ayame H; Morimoto N; Akiyoshi K Bioconjug Chem; 2008 Apr; 19(4):882-90. PubMed ID: 18336000 [TBL] [Abstract][Full Text] [Related]
45. Templateless synthesis of polyacrylamide-based Nanogels via RAFT dispersion polymerization. Ma K; Xu Y; An Z Macromol Rapid Commun; 2015 Mar; 36(6):566-70. PubMed ID: 25684634 [TBL] [Abstract][Full Text] [Related]
46. pH Sensitive graft copolymers for zero order drug release: a mechanistic analysis. Muthusamy R; Kulkarni MG Drug Dev Ind Pharm; 2012 Jan; 38(1):73-83. PubMed ID: 22118221 [TBL] [Abstract][Full Text] [Related]
47. Fabrication and in vivo evaluation of highly pH-responsive acrylic microparticles for targeted gastrointestinal delivery. Kendall RA; Alhnan MA; Nilkumhang S; Murdan S; Basit AW Eur J Pharm Sci; 2009 Jun; 37(3-4):284-90. PubMed ID: 19491017 [TBL] [Abstract][Full Text] [Related]
48. Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. Suedee R; Jantarat C; Lindner W; Viernstein H; Songkro S; Srichana T J Control Release; 2010 Feb; 142(1):122-31. PubMed ID: 19857533 [TBL] [Abstract][Full Text] [Related]
49. PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nanogels. Mok H; Park TG Bioconjug Chem; 2006; 17(6):1369-72. PubMed ID: 17105212 [TBL] [Abstract][Full Text] [Related]
50. Template-assisted synthesis of nanogels from Pluronic-modified poly(acrylic acid). Bronich TK; Bontha S; Shlyakhtenko LS; Bromberg L; Hatton TA; Kabanov AV J Drug Target; 2006 Jul; 14(6):357-66. PubMed ID: 17092836 [TBL] [Abstract][Full Text] [Related]
51. Magnetic poly(PEGMA-MAA) nanoparticles: photochemical preparation and potential application in drug delivery. Sun HW; Zhang LY; Zhu XJ; Wang XF J Biomater Sci Polym Ed; 2009; 20(12):1675-86. PubMed ID: 19723435 [TBL] [Abstract][Full Text] [Related]
52. Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels. Tan BH; Ravi P; Tan LN; Tam KC J Colloid Interface Sci; 2007 May; 309(2):453-63. PubMed ID: 17307196 [TBL] [Abstract][Full Text] [Related]
53. Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. Oh JK; Siegwart DJ; Matyjaszewski K Biomacromolecules; 2007 Nov; 8(11):3326-31. PubMed ID: 17894465 [TBL] [Abstract][Full Text] [Related]
54. Preparation and characterization of amino-functionalized magnetic nanogels via photopolymerization for MRI applications. Gong Y; Fan M; Gao F; Hong J; Liu S; Luo S; Yu J; Huang J Colloids Surf B Biointerfaces; 2009 Jul; 71(2):243-7. PubMed ID: 19278838 [TBL] [Abstract][Full Text] [Related]
55. Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery. Luo Y; Zhang K; Wei Q; Liu Z; Chen Y Acta Biomater; 2009 Jan; 5(1):316-27. PubMed ID: 18723415 [TBL] [Abstract][Full Text] [Related]
56. Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure. Yusa S; Sugahara M; Endo T; Morishima Y Langmuir; 2009 May; 25(9):5258-65. PubMed ID: 19292434 [TBL] [Abstract][Full Text] [Related]
57. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy. Nakamura T; Tamura A; Murotani H; Oishi M; Jinji Y; Matsuishi K; Nagasaki Y Nanoscale; 2010 May; 2(5):739-46. PubMed ID: 20648319 [TBL] [Abstract][Full Text] [Related]
58. One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol. Sousa-Herves A; Wedepohl S; Calderón M Chem Commun (Camb); 2015 Mar; 51(25):5264-7. PubMed ID: 25757793 [TBL] [Abstract][Full Text] [Related]
59. Direct measurement of interactions between stimulation-responsive drug delivery vehicles and artificial mucin layers by colloid probe atomic force microscopy. Iijima M; Yoshimura M; Tsuchiya T; Tsukada M; Ichikawa H; Fukumori Y; Kamiya H Langmuir; 2008 Apr; 24(8):3987-92. PubMed ID: 18312015 [TBL] [Abstract][Full Text] [Related]
60. Double hydrophilic block copolymers PEO-b-PGA: synthesis, application as potential drug carrier and drug release via pH-sensitive linkage. Tang X; Pan CY J Biomed Mater Res A; 2008 Aug; 86(2):428-38. PubMed ID: 17975819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]