These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17950627)

  • 21. Assessing the spatial distribution of cervical spinal cord activity during tactile stimulation of the upper extremity in humans with functional magnetic resonance imaging.
    Weber KA; Chen Y; Paliwal M; Law CS; Hopkins BS; Mackey S; Dhaher Y; Parrish TB; Smith ZA
    Neuroimage; 2020 Aug; 217():116905. PubMed ID: 32387628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dynamic system model-based technique for functional MRI data analysis.
    Kamba M; Sung YW; Ogawa S
    Neuroimage; 2004 May; 22(1):179-87. PubMed ID: 15110008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The potential of MR-Encephalography for BCI/Neurofeedback applications with high temporal resolution.
    Lührs M; Riemenschneider B; Eck J; Andonegui AB; Poser BA; Heinecke A; Krause F; Esposito F; Sorger B; Hennig J; Goebel R
    Neuroimage; 2019 Jul; 194():228-243. PubMed ID: 30910728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short tau inversion recovery fast spin-echo (fast STIR) imaging of the spinal cord in multiple sclerosis.
    Thorpe JW; MacManus DG; Kendall BE; Tofts PS; Barker GJ; McDonald WI; Miller DH
    Magn Reson Imaging; 1994; 12(7):983-9. PubMed ID: 7997103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI).
    Preibisch C; Pilatus U; Bunke J; Hoogenraad F; Zanella F; Lanfermann H
    Neuroimage; 2003 Jun; 19(2 Pt 1):412-21. PubMed ID: 12814590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spinal cord imaging using averaged magnetization inversion recovery acquisitions.
    Weigel M; Bieri O
    Magn Reson Med; 2018 Apr; 79(4):1870-1881. PubMed ID: 28714105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging.
    Pfeuffer J; Van de Moortele PF; Ugurbil K; Hu X; Glover GH
    Magn Reson Med; 2002 Feb; 47(2):344-53. PubMed ID: 11810679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lateralization of cervical spinal cord activity during an isometric upper extremity motor task with functional magnetic resonance imaging.
    Weber KA; Chen Y; Wang X; Kahnt T; Parrish TB
    Neuroimage; 2016 Jan; 125():233-243. PubMed ID: 26488256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence-independent segmentation of magnetic resonance images.
    Fischl B; Salat DH; van der Kouwe AJ; Makris N; Ségonne F; Quinn BT; Dale AM
    Neuroimage; 2004; 23 Suppl 1():S69-84. PubMed ID: 15501102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time fMRI processing with physiological noise correction - Comparison with off-line analysis.
    Misaki M; Barzigar N; Zotev V; Phillips R; Cheng S; Bodurka J
    J Neurosci Methods; 2015 Dec; 256():117-21. PubMed ID: 26343529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation.
    Zhao F; Williams M; Meng X; Welsh DC; Coimbra A; Crown ED; Cook JJ; Urban MO; Hargreaves R; Williams DS
    Neuroimage; 2008 Mar; 40(1):133-47. PubMed ID: 18164630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spin-Echo Resting-State Functional Connectivity in High-Susceptibility Regions: Accuracy, Reliability, and the Impact of Physiological Noise.
    Khatamian YB; Golestani AM; Ragot DM; Chen JJ
    Brain Connect; 2016 May; 6(4):283-97. PubMed ID: 26842962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.
    Behzadi Y; Restom K; Liau J; Liu TT
    Neuroimage; 2007 Aug; 37(1):90-101. PubMed ID: 17560126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T.
    Ragot DM; Chen JJ
    Magn Reson Imaging; 2019 Apr; 57():328-336. PubMed ID: 30439514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the use of principal component analysis to reduce physiological noise and motion artifacts to increase the sensitivity of task-based fMRI.
    Soltysik DA; Thomasson D; Rajan S; Biassou N
    J Neurosci Methods; 2015 Feb; 241():18-29. PubMed ID: 25481542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reducing respiratory effect in motion correction for EPI images with sequential slice acquisition order.
    Cheng H; Puce A
    J Neurosci Methods; 2014 Apr; 227():83-9. PubMed ID: 24561185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the impact of physiological noise in spinal cord functional MRI.
    Fratini M; Moraschi M; Maraviglia B; Giove F
    J Magn Reson Imaging; 2014 Oct; 40(4):770-7. PubMed ID: 24925698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous Multislice Resting-State Functional Magnetic Resonance Imaging at 3 Tesla: Slice-Acceleration-Related Biases in Physiological Effects.
    Golestani AM; Faraji-Dana Z; Kayvanrad M; Setsompop K; Graham SJ; Chen JJ
    Brain Connect; 2018 Mar; 8(2):82-93. PubMed ID: 29226689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased BOLD sensitivity in the orbitofrontal cortex using slice-dependent echo times at 3 T.
    Domsch S; Linke J; Heiler PM; Kroll A; Flor H; Wessa M; Schad LR
    Magn Reson Imaging; 2013 Feb; 31(2):201-11. PubMed ID: 22925606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel imaging with asymmetric acceleration to reduce Gibbs artifacts and to increase signal-to-noise ratio of the gradient echo echo-planar imaging sequence for functional MRI.
    Jung KJ; Zhao T
    Magn Reson Med; 2012 Feb; 67(2):419-27. PubMed ID: 21713976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.