BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17950701)

  • 21. Calreticulin in rainbow trout: a limited response to endoplasmic reticulum (ER) stress.
    Kales SC; Bols NC; Dixon B
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):607-15. PubMed ID: 17490907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of monoglucosylated high-mannose-type dodecasaccharide, a putative ligand for molecular chaperone, calnexin, and calreticulin.
    Matsuo I; Wada M; Manabe S; Yamaguchi Y; Otake K; Kato K; Ito Y
    J Am Chem Soc; 2003 Mar; 125(12):3402-3. PubMed ID: 12643681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calnexin/Calreticulin and Assays Related to N-Glycoprotein Folding In Vitro.
    Ihara Y; Ikezaki M; Takatani M; Ito Y
    Methods Mol Biol; 2020; 2132():295-308. PubMed ID: 32306337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calreticulin, a molecular chaperone in the endoplasmic reticulum, modulates radiosensitivity of human glioblastoma U251MG cells.
    Okunaga T; Urata Y; Goto S; Matsuo T; Mizota S; Tsutsumi K; Nagata I; Kondo T; Ihara Y
    Cancer Res; 2006 Sep; 66(17):8662-71. PubMed ID: 16951181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol.
    Afshar N; Black BE; Paschal BM
    Mol Cell Biol; 2005 Oct; 25(20):8844-53. PubMed ID: 16199864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of C1q with the receptor calreticulin requires a conformational change in C1q.
    Steinø A; Jørgensen CS; Laursen I; Houen G
    Scand J Immunol; 2004 May; 59(5):485-95. PubMed ID: 15140059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The conformational properties of the Glc3Man unit suggest conformational biasing within the chaperone-assisted glycoprotein folding pathway.
    Mackeen MM; Almond A; Deschamps M; Cumpstey I; Fairbanks AJ; Tsang C; Rudd PM; Butters TD; Dwek RA; Wormald MR
    J Mol Biol; 2009 Mar; 387(2):335-47. PubMed ID: 19356590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand.
    Hirano M; Adachi Y; Ito Y; Totani K
    Biochem Biophys Res Commun; 2015 Oct; 466(3):350-5. PubMed ID: 26362185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of an N-domain histidine essential for chaperone function in calreticulin.
    Guo L; Groenendyk J; Papp S; Dabrowska M; Knoblach B; Kay C; Parker JM; Opas M; Michalak M
    J Biol Chem; 2003 Dec; 278(50):50645-53. PubMed ID: 14522955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calreticulin in the heart.
    Michalak M; Guo L; Robertson M; Lozak M; Opas M
    Mol Cell Biochem; 2004 Aug; 263(1-2):137-42. PubMed ID: 15524174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isothermal titration calorimetric study defines the substrate binding residues of calreticulin.
    Gopalakrishnapai J; Gupta G; Karthikeyan T; Sinha S; Kandiah E; Gemma E; Oscarson S; Surolia A
    Biochem Biophys Res Commun; 2006 Dec; 351(1):14-20. PubMed ID: 17049488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convergent synthesis of homogeneous Glc1Man9GlcNAc2-protein and derivatives as ligands of molecular chaperones in protein quality control.
    Amin MN; Huang W; Mizanur RM; Wang LX
    J Am Chem Soc; 2011 Sep; 133(36):14404-17. PubMed ID: 21819116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploration of oligosaccharide-protein interactions in glycoprotein quality control by synthetic approaches.
    Hagihara S; Totani K; Ito Y
    Chem Rec; 2006; 6(6):290-302. PubMed ID: 17304538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transfer-NMR and docking studies identify the binding of the peptide derived from activating transcription factor 4 to protein ubiquitin ligase beta-TrCP. Competition STD-NMR with beta-catenin.
    Pons J; Evrard-Todeschi N; Bertho G; Gharbi-Benarous J; Tanchou V; Benarous R; Girault JP
    Biochemistry; 2008 Jan; 47(1):14-29. PubMed ID: 18052253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stratified analysis of lectin-like chaperones in the folding disease-related metabolic syndrome rat model.
    Hirano M; Imagawa A; Totani K
    Biochem Biophys Res Commun; 2016 Sep; 478(1):247-253. PubMed ID: 27425249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical method for determining relative chaperone activity using an ovalbumin-conjugated column.
    Hirano M; Kato Y; Imagawa A; Totani K
    Biochem Biophys Res Commun; 2015 Jan; 456(1):333-8. PubMed ID: 25436432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sugar-binding activity of the MRH domain in the ER alpha-glucosidase II beta subunit is important for efficient glucose trimming.
    Hu D; Kamiya Y; Totani K; Kamiya D; Kawasaki N; Yamaguchi D; Matsuo I; Matsumoto N; Ito Y; Kato K; Yamamoto K
    Glycobiology; 2009 Oct; 19(10):1127-35. PubMed ID: 19625484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses.
    Jia XY; Xu CY; Jing RL; Li RZ; Mao XG; Wang JP; Chang XP
    J Exp Bot; 2008; 59(4):739-51. PubMed ID: 18349049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of oligosaccharide probes for the analysis of protein-carbohydrate interactions.
    Takatani M; Ito Y
    Chem Asian J; 2006 Jul; 1(1-2):64-75. PubMed ID: 17441039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and characterization of calreticulin: a Ca²⁺-binding chaperone from sheep kidney.
    Dar MA; Wahiduzzaman ; Islam A; Hassan MI; Ahmad F
    Appl Biochem Biotechnol; 2014 Nov; 174(5):1771-83. PubMed ID: 25149453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.