These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 17950752)
61. Plasmodium falciparum signal peptidase is regulated by phosphorylation and required for intra-erythrocytic growth. Tuteja R; Pradhan A; Sharma S Mol Biochem Parasitol; 2008 Feb; 157(2):137-47. PubMed ID: 18054093 [TBL] [Abstract][Full Text] [Related]
62. Enzymatic activity assay of D-hydantoinase by isothermal titration calorimetry. Determination of the thermodynamic activation parameters for the hydrolysis of several substrates. Andújar-Sánchez M; Las Heras-Vázquez FJ; Clemente-Jiménez JM; Martínez-Rodríguez S; Camara-Artigas A; Rodríguez-Vico F; Jara-Pérez V J Biochem Biophys Methods; 2006 Apr; 67(1):57-66. PubMed ID: 16497383 [TBL] [Abstract][Full Text] [Related]
63. Metabolism of glutamine in erythrocytes infected with the human malaria parasite: Plasmodium falciparum. Vilmont M; Azoulay M; Frappier F Ann Parasitol Hum Comp; 1990; 65(4):162-6. PubMed ID: 1982204 [TBL] [Abstract][Full Text] [Related]
64. Structural analysis of human glutamine:fructose-6-phosphate amidotransferase, a key regulator in type 2 diabetes. Nakaishi Y; Bando M; Shimizu H; Watanabe K; Goto F; Tsuge H; Kondo K; Komatsu M FEBS Lett; 2009 Jan; 583(1):163-7. PubMed ID: 19059404 [TBL] [Abstract][Full Text] [Related]
65. Filling the gap of intracellular dephosphorylation in the Plasmodium falciparum vitamin B1 biosynthesis. Knöckel J; Bergmann B; Müller IB; Rathaur S; Walter RD; Wrenger C Mol Biochem Parasitol; 2008 Feb; 157(2):241-3. PubMed ID: 18067979 [TBL] [Abstract][Full Text] [Related]
66. Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine. Wrenger C; Eschbach ML; Müller IB; Laun NP; Begley TP; Walter RD Biol Chem; 2006 Jan; 387(1):41-51. PubMed ID: 16497163 [TBL] [Abstract][Full Text] [Related]
67. Full-length human glutaminase in complex with an allosteric inhibitor. DeLaBarre B; Gross S; Fang C; Gao Y; Jha A; Jiang F; Song J J; Wei W; Hurov JB Biochemistry; 2011 Dec; 50(50):10764-70. PubMed ID: 22049910 [TBL] [Abstract][Full Text] [Related]
68. Crystal structure of the pyocyanin biosynthetic protein PhzS. Greenhagen BT; Shi K; Robinson H; Gamage S; Bera AK; Ladner JE; Parsons JF Biochemistry; 2008 May; 47(19):5281-9. PubMed ID: 18416536 [TBL] [Abstract][Full Text] [Related]
70. PDBcal: a comprehensive dataset for receptor-ligand interactions with three-dimensional structures and binding thermodynamics from isothermal titration calorimetry. Li L; Dantzer JJ; Nowacki J; O'Callaghan BJ; Meroueh SO Chem Biol Drug Des; 2008 Jun; 71(6):529-32. PubMed ID: 18482338 [TBL] [Abstract][Full Text] [Related]
71. Interaction of Alzheimer's A beta peptide with an engineered binding protein--thermodynamics and kinetics of coupled folding-binding. Hoyer W; Härd T J Mol Biol; 2008 Apr; 378(2):398-411. PubMed ID: 18358490 [TBL] [Abstract][Full Text] [Related]
72. GrpE N-terminal domain contributes to the interaction with Dnak and modulates the dynamics of the chaperone substrate binding domain. Moro F; Taneva SG; Velázquez-Campoy A; Muga A J Mol Biol; 2007 Dec; 374(4):1054-64. PubMed ID: 17976642 [TBL] [Abstract][Full Text] [Related]
73. Molecular modelling studies on the interactions of human DNA topoisomerase IB with pyridoxal-compounds. Christmann-Franck S; Fermandjian S; Mirambeau G; Der Garabedian PA Biochimie; 2007 Apr; 89(4):468-73. PubMed ID: 17116355 [TBL] [Abstract][Full Text] [Related]
74. BetaQ114N and betaT110V mutations reveal a critically important role of the substrate alpha-carboxylate site in the reaction specificity of tryptophan synthase. Blumenstein L; Domratcheva T; Niks D; Ngo H; Seidel R; Dunn MF; Schlichting I Biochemistry; 2007 Dec; 46(49):14100-16. PubMed ID: 18004874 [TBL] [Abstract][Full Text] [Related]
75. Differences in the roles of a glutamine amidotransferase subunit of pyridoxal 5'-phosphate synthase between Bacillus circulans and Bacillus subtilis. Itagaki S; Haga M; Oikawa Y; Sakoda A; Ohke Y; Sawada H; Eguchi T; Tamegai H Biosci Biotechnol Biochem; 2013; 77(7):1481-5. PubMed ID: 23832367 [TBL] [Abstract][Full Text] [Related]
76. Structural insights into the protease-like antigen Plasmodium falciparum SERA5 and its noncanonical active-site serine. Hodder AN; Malby RL; Clarke OB; Fairlie WD; Colman PM; Crabb BS; Smith BJ J Mol Biol; 2009 Sep; 392(1):154-65. PubMed ID: 19591843 [TBL] [Abstract][Full Text] [Related]
77. Mutational, inhibitory and microcalorimetric analyses of Plasmodium falciparum TMP kinase. Implications for drug discovery. Kandeel M; Ando T; Kitamura Y; Abdel-Aziz M; Kitade Y Parasitology; 2009 Jan; 136(1):11-25. PubMed ID: 19126267 [TBL] [Abstract][Full Text] [Related]
78. Probing the roles of non-homologous insertions in the N-terminal domain of Plasmodium falciparum hydroxymethylpterin pyrophosphokinase-dihydropteroate synthase. Rattanachuen W; Jönsson M; Swedberg G; Sirawaraporn W Mol Biochem Parasitol; 2009 Dec; 168(2):135-42. PubMed ID: 19631695 [TBL] [Abstract][Full Text] [Related]
79. Deciphering the key residues in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase responsible for interactions with Plasmodium falciparum acyl carrier protein. Karmodiya K; Modak R; Sahoo N; Sajad S; Surolia N FEBS J; 2008 Oct; 275(19):4756-66. PubMed ID: 18721141 [TBL] [Abstract][Full Text] [Related]
80. Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA). Thangavelu K; Chong QY; Low BC; Sivaraman J Sci Rep; 2014 Jan; 4():3827. PubMed ID: 24451979 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]