These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17950778)

  • 41. Simultaneous removal of fluoride and phosphate from semiconductor wastewater via chemical precipitation of calcium fluoride and hydroxyapatite using byproduct of recycled aggregate.
    Ho HJ; Takahashi M; Iizuka A
    Chemosphere; 2023 Nov; 340():139875. PubMed ID: 37611767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recovery of activated carbon catalyst, calcium, nitrogen and phosphate from effluent following supercritical water gasification of poultry manure.
    Yanagida T; Minowa T; Shimizu Y; Matsumura Y; Noda Y
    Bioresour Technol; 2009 Oct; 100(20):4884-6. PubMed ID: 19535245
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphate removal from wastewater using red mud.
    Huang W; Wang S; Zhu Z; Li L; Yao X; Rudolph V; Haghseresht F
    J Hazard Mater; 2008 Oct; 158(1):35-42. PubMed ID: 18314264
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adsorption and recovery of phosphate from water by amine fiber, effects of co-existing ions and column filtration.
    Wei J; Meng X; Wen X; Song Y
    J Environ Sci (China); 2020 Jan; 87():123-132. PubMed ID: 31791486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of phosphate from water by a highly selective La(III)-chelex resin.
    Wu RS; Lam KH; Lee JM; Lau TC
    Chemosphere; 2007 Sep; 69(2):289-94. PubMed ID: 17531289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient recovery of nitrate and phosphate from wastewater by an amine-grafted adsorbent for cyanobacterial biomass production.
    Kim J; Hwang MJ; Lee SJ; Noh W; Kwon JM; Choi JS; Kang CM
    Bioresour Technol; 2016 Apr; 205():269-73. PubMed ID: 26827169
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Radioactivity and fluoride contamination derived from a phosphate fertilizer plant in Egypt.
    Mourad NM; Sharshar T; Elnimr T; Mousa MA
    Appl Radiat Isot; 2009; 67(7-8):1259-68. PubMed ID: 19282198
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation.
    Uludag-Demirer S; Othman M
    Bioresour Technol; 2009 Jul; 100(13):3236-44. PubMed ID: 19318246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB).
    Gibert O; Pomierny S; Rowe I; Kalin RM
    Bioresour Technol; 2008 Nov; 99(16):7587-96. PubMed ID: 18353637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.
    Barat R; Montoya T; Borrás L; Ferrer J; Seco A
    Water Res; 2008 Jul; 42(13):3415-24. PubMed ID: 18538819
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.
    Beddow H; Black S; Read D
    J Environ Radioact; 2006; 86(3):289-312. PubMed ID: 16303218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrocoagulation technique in enhancing COD and suspended solids removal to improve wastewater quality.
    Ni'am MF; Othman F; Sohaili J; Fauzia Z
    Water Sci Technol; 2007; 56(7):47-53. PubMed ID: 17951867
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.
    Guerrero A; Goñi S; Allegro VR
    J Hazard Mater; 2009 Jun; 165(1-3):903-8. PubMed ID: 19056176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A systematic approach for the comparative assessment of stormwater pollutant removal potentials.
    Scholes L; Revitt DM; Ellis JB
    J Environ Manage; 2008 Aug; 88(3):467-78. PubMed ID: 17462814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.
    Bordallo HN; Aldridge LP; Desmedt A
    J Phys Chem B; 2006 Sep; 110(36):17966-76. PubMed ID: 16956288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Review of fluoride removal from drinking water.
    Mohapatra M; Anand S; Mishra BK; Giles DE; Singh P
    J Environ Manage; 2009 Oct; 91(1):67-77. PubMed ID: 19775804
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling effluent distribution and nitrate transport through an on-site wastewater system.
    Hassan G; Reneau RB; Hagedorn C; Jantrania AR
    J Environ Qual; 2008; 37(5):1937-48. PubMed ID: 18689755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recovery oriented phosphorus adsorption process in decentralized advanced Johkasou.
    Ebie Y; Kondo T; Kadoya N; Mouri M; Maruyama O; Noritake S; Inamori Y; Xu K
    Water Sci Technol; 2008; 57(12):1977-81. PubMed ID: 18587187
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrated cement: a promising adsorbent for the removal of fluoride from aqueous solution.
    Kagne S; Jagtap S; Dhawade P; Kamble SP; Devotta S; Rayalu SS
    J Hazard Mater; 2008 Jun; 154(1-3):88-95. PubMed ID: 18006151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment.
    Wang J; Lu H; Chen GH; Lau GN; Tsang WL; van Loosdrecht MC
    Water Res; 2009 May; 43(9):2363-72. PubMed ID: 19345391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.