BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17951049)

  • 1. Conformational changes in ammonia-channeling glutamine amidotransferases.
    Mouilleron S; Golinelli-Pimpaneau B
    Curr Opin Struct Biol; 2007 Dec; 17(6):653-64. PubMed ID: 17951049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of glutamine-dependent amidotransferases.
    Massière F; Badet-Denisot MA
    Cell Mol Life Sci; 1998 Mar; 54(3):205-22. PubMed ID: 9575335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel.
    Mouilleron S; Badet-Denisot MA; Golinelli-Pimpaneau B
    J Mol Biol; 2008 Apr; 377(4):1174-85. PubMed ID: 18295797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and coupling of the glutaminase and synthase reaction of glutamate synthase is mediated by E1013 of the ferredoxin-dependent enzyme, belonging to loop 4 of the synthase domain.
    Dossena L; Curti B; Vanoni MA
    Biochemistry; 2007 Apr; 46(15):4473-85. PubMed ID: 17373776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis uncoupling in a glutamine amidotransferase bienzyme by unblocking the glutaminase active site.
    List F; Vega MC; Razeto A; Häger MC; Sterner R; Wilmanns M
    Chem Biol; 2012 Dec; 19(12):1589-99. PubMed ID: 23261602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase.
    Binda C; Bossi RT; Wakatsuki S; Arzt S; Coda A; Curti B; Vanoni MA; Mattevi A
    Structure; 2000 Dec; 8(12):1299-308. PubMed ID: 11188694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of RNA-dependent recruitment of glutamine to the genetic code.
    Oshikane H; Sheppard K; Fukai S; Nakamura Y; Ishitani R; Numata T; Sherrer RL; Feng L; Schmitt E; Panvert M; Blanquet S; Mechulam Y; Söll D; Nureki O
    Science; 2006 Jun; 312(5782):1950-4. PubMed ID: 16809540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of glucosamine-6-phosphate synthase catalysis.
    Mouilleron S; Badet-Denisot MA; Badet B; Golinelli-Pimpaneau B
    Arch Biochem Biophys; 2011 Jan; 505(1):1-12. PubMed ID: 20709015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction coupling through interdomain contacts in imidazole glycerol phosphate synthase.
    Myers RS; Amaro RE; Luthey-Schulten ZA; Davisson VJ
    Biochemistry; 2005 Sep; 44(36):11974-85. PubMed ID: 16142895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channeling of ammonia in glucosamine-6-phosphate synthase.
    Teplyakov A; Obmolova G; Badet B; Badet-Denisot MA
    J Mol Biol; 2001 Nov; 313(5):1093-102. PubMed ID: 11700065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism for acivicin inactivation of triad glutamine amidotransferases.
    Chittur SV; Klem TJ; Shafer CM; Davisson VJ
    Biochemistry; 2001 Jan; 40(4):876-87. PubMed ID: 11170408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A convenient gHMQC-based NMR assay for investigating ammonia channeling in glutamine-dependent amidotransferases: studies of Escherichia coli asparagine synthetase B.
    Li KK; Beeson WT; Ghiviriga I; Richards NG
    Biochemistry; 2007 Apr; 46(16):4840-9. PubMed ID: 17397190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-induced changes in the ammonia channel for imidazole glycerol phosphate synthase.
    Myers RS; Jensen JR; Deras IL; Smith JL; Davisson VJ
    Biochemistry; 2003 Jun; 42(23):7013-22. PubMed ID: 12795596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain motions of glucosamine-6P synthase: comparison of the anisotropic displacements in the crystals and the catalytic hinge-bending rotation.
    Mouilleron S; Golinelli-Pimpaneau B
    Protein Sci; 2007 Mar; 16(3):485-93. PubMed ID: 17322533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase.
    Bieganowski P; Pace HC; Brenner C
    J Biol Chem; 2003 Aug; 278(35):33049-55. PubMed ID: 12771147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory control of the amidotransferase domain of carbamoyl phosphate synthetase.
    Miles BW; Banzon JA; Raushel FM
    Biochemistry; 1998 Nov; 37(47):16773-9. PubMed ID: 9843448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconstruction of the catalytic array within the amidotransferase subunit of carbamoyl phosphate synthetase.
    Huang X; Raushel FM
    Biochemistry; 1999 Nov; 38(48):15909-14. PubMed ID: 10625457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site.
    Krahn JM; Kim JH; Burns MR; Parry RJ; Zalkin H; Smith JL
    Biochemistry; 1997 Sep; 36(37):11061-8. PubMed ID: 9333323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cysteine-histidine-aspartate catalytic triad is involved in glutamine amide transfer function in purF-type glutamine amidotransferases.
    Mei B; Zalkin H
    J Biol Chem; 1989 Oct; 264(28):16613-9. PubMed ID: 2674138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain organization of Salmonella typhimurium formylglycinamide ribonucleotide amidotransferase revealed by X-ray crystallography.
    Anand R; Hoskins AA; Stubbe J; Ealick SE
    Biochemistry; 2004 Aug; 43(32):10328-42. PubMed ID: 15301531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.