These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17951379)

  • 1. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.
    Wargo MJ; Szwergold BS; Hogan DA
    J Bacteriol; 2008 Apr; 190(8):2690-9. PubMed ID: 17951379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR.
    Willsey GG; Wargo MJ
    J Bacteriol; 2016 Jan; 198(2):301-10. PubMed ID: 26503852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced catabolism of glycine betaine and derivatives provides improved osmotic stress protection in
    Bruger EL; Hying ZT; Singla D; Márquez Reyes NL; Pandey SK; Patel JS; Bazurto JV
    Appl Environ Microbiol; 2024 Jul; 90(7):e0031024. PubMed ID: 38934615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the GbdR regulon in Pseudomonas aeruginosa.
    Hampel KJ; LaBauve AE; Meadows JA; Fitzsimmons LF; Nock AM; Wargo MJ
    J Bacteriol; 2014 Jan; 196(1):7-15. PubMed ID: 24097953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of Dimethylglycine, Glycine Betaine, and Ectoine Uptake by a Betaine-Carnitine-Choline Transporter Family Transporter with Diverse Substrate Specificity in
    Gregory GJ; Dutta A; Parashar V; Boyd EF
    J Bacteriol; 2020 Nov; 202(24):. PubMed ID: 32817090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of
    Yang T; Shao YH; Guo LZ; Meng XL; Yu H; Lu WD
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32631860
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of genes required for Pseudomonas aeruginosa carnitine catabolism.
    Wargo MJ; Hogan DA
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2411-2419. PubMed ID: 19406895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection.
    Wargo MJ
    PLoS One; 2013; 8(2):e56850. PubMed ID: 23457628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites.
    Wargo MJ; Ho TC; Gross MJ; Whittaker LA; Hogan DA
    Infect Immun; 2009 Mar; 77(3):1103-11. PubMed ID: 19103776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism.
    Meskys R; Harris RJ; Casaite V; Basran J; Scrutton NS
    Eur J Biochem; 2001 Jun; 268(12):3390-8. PubMed ID: 11422368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAO1.
    Sage AE; Vasil AI; Vasil ML
    Mol Microbiol; 1997 Jan; 23(1):43-56. PubMed ID: 9004219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Succinate-mediated catabolite repression control on the production of glycine betaine catabolic enzymes in Pseudomonas aeruginosa PAO1 under low and elevated salinities.
    Diab F; Bernard T; Bazire A; Haras D; Blanco C; Jebbar M
    Microbiology (Reading); 2006 May; 152(Pt 5):1395-1406. PubMed ID: 16622056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycine Betaine Monooxygenase, an Unusual Rieske-Type Oxygenase System, Catalyzes the Oxidative
    Shao YH; Guo LZ; Zhang YQ; Yu H; Zhao BS; Pang HQ; Lu WD
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29703733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H.
    Collins RE; Deming JW
    Extremophiles; 2013 Jul; 17(4):601-10. PubMed ID: 23674353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators.
    Nock AM; Wargo MJ
    J Bacteriol; 2016 Sep; 198(18):2503-14. PubMed ID: 27381916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa.
    Wargo MJ
    Appl Environ Microbiol; 2013 Apr; 79(7):2112-20. PubMed ID: 23354714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular choline and glycine betaine pools impact osmoprotection and phospholipase C production in Pseudomonas aeruginosa.
    Fitzsimmons LF; Hampel KJ; Wargo MJ
    J Bacteriol; 2012 Sep; 194(17):4718-26. PubMed ID: 22753069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choline degradation in
    Parekh T; Tsai M; Spiro S
    J Bacteriol; 2024 Apr; 206(4):e0008124. PubMed ID: 38501746
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycine betaine metabolism is enabled in
    Hying ZT; Miller TJ; Loh CY; Bazurto JV
    Appl Environ Microbiol; 2024 Jul; 90(7):e0209023. PubMed ID: 38534142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa gbdR gene is transcribed from a σ54-dependent promoter under the control of NtrC/CbrB, IHF and BetI.
    Sánchez DG; Primo ED; Damiani MT; Lisa AT
    Microbiology (Reading); 2017 Sep; 163(9):1343-1354. PubMed ID: 28791946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.