These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 17951627)

  • 41. Green-fluorescent protein fusions for efficient characterization of nuclear targeting.
    Grebenok RJ; Pierson E; Lambert GM; Gong FC; Afonso CL; Haldeman-Cahill R; Carrington JC; Galbraith DW
    Plant J; 1997 Mar; 11(3):573-86. PubMed ID: 9107043
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Folding Latency of Fluorescent Proteins Affects the Mitochondrial Localization of Fusion Proteins.
    Kashiwagi S; Fujioka Y; Satoh AO; Yoshida A; Fujioka M; Nepal P; Tsuzuki A; Aoki O; Paudel S; Sasajima H; Ohba Y
    Cell Struct Funct; 2019 Dec; 44(2):183-194. PubMed ID: 31735740
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and characterization of two putative nuclear localization signals (NLS) in the DNA-binding protein NUCKS.
    Grundt K; Haga IV; Huitfeldt HS; Ostvold AC
    Biochim Biophys Acta; 2007 Sep; 1773(9):1398-406. PubMed ID: 17604136
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An N-terminal segment of the active component of the bacterial genotoxin cytolethal distending toxin B (CDTB) directs CDTB into the nucleus.
    Nishikubo S; Ohara M; Ueno Y; Ikura M; Kurihara H; Komatsuzawa H; Oswald E; Sugai M
    J Biol Chem; 2003 Dec; 278(50):50671-81. PubMed ID: 12947116
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional characterization of green fluorescent protein-profilin fusion proteins.
    Wittenmayer N; Rothkegel M; Jockusch BM; Schlüter K
    Eur J Biochem; 2000 Aug; 267(16):5247-56. PubMed ID: 10931210
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nuclear-localization-signal-dependent and nuclear-export-signal-dependent mechanisms determine the localization of 5-lipoxygenase.
    Hanaka H; Shimizu T; Izumi T
    Biochem J; 2002 Feb; 361(Pt 3):505-14. PubMed ID: 11802780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclear trafficking of photoreceptor protein crx: the targeting sequence and pathologic implications.
    Fei Y; Hughes TE
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2849-56. PubMed ID: 10967037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum.
    Biondi RM; Baehler PJ; Reymond CD; Véron M
    Nucleic Acids Res; 1998 Nov; 26(21):4946-52. PubMed ID: 9776758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from dictyostelium that regulates nuclear number.
    Myre MA; O'Day DH
    J Biol Chem; 2002 May; 277(22):19735-44. PubMed ID: 11919178
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Green fluorescent protein.
    Chalfie M
    Photochem Photobiol; 1995 Oct; 62(4):651-6. PubMed ID: 7480149
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nuclear translocation of green fluorescent protein-nuclear factor kappaB with a distinct lag time in living cells.
    Tenjinbaru K; Furuno T; Hirashima N; Nakanishi M
    FEBS Lett; 1999 Feb; 444(1):1-4. PubMed ID: 10037137
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Localization, trafficking, and temperature-dependence of the Aequorea green fluorescent protein in cultured vertebrate cells.
    Ogawa H; Inouye S; Tsuji FI; Yasuda K; Umesono K
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11899-903. PubMed ID: 8524871
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo.
    Rizzuto R; Brini M; De Giorgi F; Rossi R; Heim R; Tsien RY; Pozzan T
    Curr Biol; 1996 Feb; 6(2):183-8. PubMed ID: 8673465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multisite phosphorylation and the nuclear localization of phosphatase inhibitor 2-green fluorescent protein fusion protein during S phase of the cell growth cycle.
    Kakinoki Y; Somers J; Brautigan DL
    J Biol Chem; 1997 Dec; 272(51):32308-14. PubMed ID: 9405437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo and in vitro protein solubility assays using split GFP.
    Cabantous S; Waldo GS
    Nat Methods; 2006 Oct; 3(10):845-54. PubMed ID: 16990817
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmids for C-terminal tagging in Saccharomyces cerevisiae that contain improved GFP proteins, Envy and Ivy.
    Slubowski CJ; Funk AD; Roesner JM; Paulissen SM; Huang LS
    Yeast; 2015 Apr; 32(4):379-87. PubMed ID: 25612242
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A versatile assay for RNA-binding proteins in living cells.
    Strein C; Alleaume AM; Rothbauer U; Hentze MW; Castello A
    RNA; 2014 May; 20(5):721-31. PubMed ID: 24664470
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.
    Cui Y; Gao C; Zhao Q; Jiang L
    Methods Mol Biol; 2016; 1474():113-23. PubMed ID: 27515077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells.
    Kanda T; Sullivan KF; Wahl GM
    Curr Biol; 1998 Mar; 8(7):377-85. PubMed ID: 9545195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Green fluorescent antibodies: novel in vitro tools.
    Casey JL; Coley AM; Tilley LM; Foley M
    Protein Eng; 2000 Jun; 13(6):445-52. PubMed ID: 10877856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.