These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17951731)

  • 1. Statistical thermodynamics through computer simulation to characterize phospholipid interactions in membranes.
    Mezei M; Jedlovszky P
    Methods Mol Biol; 2007; 400():127-44. PubMed ID: 17951731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of hydrated phospholipid bilayers.
    Kothekar V
    Indian J Biochem Biophys; 1996 Dec; 33(6):431-47. PubMed ID: 9219427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints.
    Murtola T; Falck E; Karttunen M; Vattulainen I
    J Chem Phys; 2007 Feb; 126(7):075101. PubMed ID: 17328634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical thermodynamics of biomembranes.
    Devireddy RV
    Cryobiology; 2010 Feb; 60(1):80-90. PubMed ID: 19460363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of water-mediated forces between gel-phase phospholipid bilayers.
    Pertsin A; Fedyanin I; Grunze M
    J Chem Phys; 2009 Dec; 131(21):215102. PubMed ID: 19968369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of phospholipid bilayers using recently developed general all-atom force fields.
    Rosso L; Gould IR
    J Comput Chem; 2008 Jan; 29(1):24-37. PubMed ID: 17910006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the inner structure and topology of clusters in two-component lipid bilayers. Comparison of monomer and dimer Ising models.
    Sugár IP
    J Phys Chem B; 2008 Sep; 112(37):11631-42. PubMed ID: 18729402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo folding of trans-membrane helical peptides in an implicit generalized Born membrane.
    Ulmschneider JP; Ulmschneider MB; Di Nola A
    Proteins; 2007 Nov; 69(2):297-308. PubMed ID: 17600830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; Vácha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface pressure-dependent interactions of secretory phospholipase A2 with zwitterionic phospholipid membranes.
    Huang WN; Chen YH; Chen CL; Wu W
    Langmuir; 2011 Jun; 27(11):7034-41. PubMed ID: 21557547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes.
    Leonard AN; Wang E; Monje-Galvan V; Klauda JB
    Chem Rev; 2019 May; 119(9):6227-6269. PubMed ID: 30785731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed molecular dynamics simulations of model biological membranes containing cholesterol.
    Berkowitz ML
    Biochim Biophys Acta; 2009 Jan; 1788(1):86-96. PubMed ID: 18930019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Monte Carlo and molecular dynamics simulation of hydrated 18:0 sphingomyelin-cholesterol lipid bilayers.
    Khelashvili GA; Scott HL
    J Chem Phys; 2004 May; 120(20):9841-7. PubMed ID: 15268001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical thermodynamics of internal rotation in a hindering potential of mean force obtained from computer simulations.
    Hnizdo V; Fedorowicz A; Singh H; Demchuk E
    J Comput Chem; 2003 Jul; 24(10):1172-83. PubMed ID: 12820124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implicit-solvent mesoscale model based on soft-core potentials for self-assembled lipid membranes.
    Revalee JD; Laradji M; Sunil Kumar PB
    J Chem Phys; 2008 Jan; 128(3):035102. PubMed ID: 18205524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling efficiency in explicit and implicit membrane environments studied by peptide folding simulations.
    Ulmschneider JP; Ulmschneider MB
    Proteins; 2009 May; 75(3):586-97. PubMed ID: 19003985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative molecular dynamics and Monte Carlo study of statistical properties for coarse-grained heteropolymers.
    Schluttig J; Bachmann M; Janke W
    J Comput Chem; 2008 Nov; 29(15):2603-12. PubMed ID: 18478584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. II. Homo-arrays of LH2 complexes reconstituted into phospholipid model membranes.
    Pflock TJ; Oellerich S; Krapf L; Southall J; Cogdell RJ; Ullmann GM; Köhler J
    J Phys Chem B; 2011 Jul; 115(28):8821-31. PubMed ID: 21650216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.