These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17951736)

  • 1. Fourier transform infrared spectroscopy in the study of lipid phase transitions in model and biological membranes: practical considerations.
    Lewis RN; McElhaney RN
    Methods Mol Biol; 2007; 400():207-26. PubMed ID: 17951736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential scanning calorimetry in the study of lipid phase transitions in model and biological membranes: practical considerations.
    Lewis RN; Mannock DA; McElhaney RN
    Methods Mol Biol; 2007; 400():171-95. PubMed ID: 17951734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy.
    Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2013 Oct; 1828(10):2347-58. PubMed ID: 23098834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of phospholipid organization and lipid-peptide interactions in nanoporous substrate-supported lipid model membranes.
    Alaouie AM; Lewis RN; McElhaney RN
    Langmuir; 2007 Jun; 23(13):7229-34. PubMed ID: 17530791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy.
    Mantsch HH; McElhaney RN
    Chem Phys Lipids; 1991 Mar; 57(2-3):213-26. PubMed ID: 2054905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydrating phospholipid vesicles measured in real-time using ATR Fourier transform infrared spectroscopy.
    Wolkers WF; Oldenhof H; Glasmacher B
    Cryobiology; 2010 Aug; 61(1):108-14. PubMed ID: 20566369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reorganizational dynamics of multilamellar lipid bilayer assemblies using continuously scanning Fourier transform infrared spectroscopic imaging.
    Huffman SW; Schlücker S; Levin IW
    Chem Phys Lipids; 2004 Jul; 130(2):167-74. PubMed ID: 15172833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weakened hydrogen bonds in water confined between lipid bilayers: the existence of a long-range attractive hydration force.
    Arsov Z; Rappolt M; Grdadolnik J
    Chemphyschem; 2009 Jul; 10(9-10):1438-41. PubMed ID: 19466703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional cooperativity in the phase transitions of dipalmitoylphosphatidylcholine bilayers: the lipid tail triggers the isothermal crystallization process.
    Wu FG; Jia Q; Wu RG; Yu ZW
    J Phys Chem B; 2011 Jul; 115(26):8559-68. PubMed ID: 21634795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The conformational analysis of peptides using Fourier transform IR spectroscopy.
    Haris PI; Chapman D
    Biopolymers; 1995; 37(4):251-63. PubMed ID: 7540054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray kinematography of phase transformations of three-component lipid mixtures: a time-resolved synchrotron X-ray scattering study using the pressure-jump relaxation technique.
    Jeworrek C; Pühse M; Winter R
    Langmuir; 2008 Oct; 24(20):11851-9. PubMed ID: 18767826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of two-component monomolecular layers formed with dipalmitoylphosphatidylcholine and the carotenoid pigment, canthaxanthin.
    Sujak A; Gagos M; Dalla Serra M; Gruszecki WI
    Mol Membr Biol; 2007; 24(5-6):431-41. PubMed ID: 17710647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oriented confined water induced by cationic lipids.
    Woiterski L; Britt DW; Käs JA; Selle C
    Langmuir; 2012 Mar; 28(10):4712-22. PubMed ID: 22339557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Order at the edge of the bilayer: membrane remodeling at the edge of a planar supported bilayer is accompanied by a localized phase change.
    Smith AM; Vinchurkar M; Gronbech-Jensen N; Parikh AN
    J Am Chem Soc; 2010 Jul; 132(27):9320-7. PubMed ID: 20560661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy.
    Arsov Z; Quaroni L
    Chem Phys Lipids; 2007 Nov; 150(1):35-48. PubMed ID: 17662974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Configuration of carbonyl groups at the lipid interphases of different topological arrangements of lipid dispersions.
    Frías Mde L; Disalvo EA
    Langmuir; 2009 Jul; 25(14):8187-91. PubMed ID: 19438173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared spectroscopy of fluid lipid bilayers.
    Hull MC; Cambrea LR; Hovis JS
    Anal Chem; 2005 Sep; 77(18):6096-9. PubMed ID: 16159147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetonitrile induces nonsynchronous interdigitation and dehydration of dipalmitoylphosphatidylcholine bilayers.
    Wu FG; Wang NN; Tao LF; Yu ZW
    J Phys Chem B; 2010 Oct; 114(39):12685-91. PubMed ID: 20836505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical dynamometry to study phase transitions in lipid membranes.
    Dimova R; Pouligny B
    Methods Mol Biol; 2007; 400():227-36. PubMed ID: 17951737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.