These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17951738)

  • 21. Membrane partition of fatty acids and inhibition of T cell function.
    Anel A; Richieri GV; Kleinfeld AM
    Biochemistry; 1993 Jan; 32(2):530-6. PubMed ID: 8422363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Switchable nile red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes.
    Kucherak OA; Oncul S; Darwich Z; Yushchenko DA; Arntz Y; Didier P; Mély Y; Klymchenko AS
    J Am Chem Soc; 2010 Apr; 132(13):4907-16. PubMed ID: 20225874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conjugated polyene fatty acids as fluorescent membrane probes: model system studies.
    Sklar LA; Hudson BS
    J Supramol Struct; 1976; 4(4):449-65. PubMed ID: 778493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unsaturated phospholipid acyl chains are required to constitute membrane binding sites for factor VIII.
    Gilbert GE; Arena AA
    Biochemistry; 1998 Sep; 37(39):13526-35. PubMed ID: 9753438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids.
    Kamp F; Hamilton JA
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11367-70. PubMed ID: 1454821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast diffusion of very long chain saturated fatty acids across a bilayer membrane and their rapid extraction by cyclodextrins: implications for adrenoleukodystrophy.
    Pillai BK; Jasuja R; Simard JR; Hamilton JA
    J Biol Chem; 2009 Nov; 284(48):33296-304. PubMed ID: 19801636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes.
    Rossi C; Homand J; Bauche C; Hamdi H; Ladant D; Chopineau J
    Biochemistry; 2003 Dec; 42(51):15273-83. PubMed ID: 14690437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering.
    Nakano M; Fukuda M; Kudo T; Matsuzaki N; Azuma T; Sekine K; Endo H; Handa T
    J Phys Chem B; 2009 May; 113(19):6745-8. PubMed ID: 19385639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatty acid-albumin complexes and the determination of the transport of long chain free fatty acids across membranes.
    Cupp D; Kampf JP; Kleinfeld AM
    Biochemistry; 2004 Apr; 43(15):4473-81. PubMed ID: 15078093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems.
    Thomas RM; Baici A; Werder M; Schulthess G; Hauser H
    Biochemistry; 2002 Feb; 41(5):1591-601. PubMed ID: 11814353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissociation of long and very long chain fatty acids from phospholipid bilayers.
    Zhang F; Kamp F; Hamilton JA
    Biochemistry; 1996 Dec; 35(50):16055-60. PubMed ID: 8973175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transbilayer movement of phospholipids in biogenic membranes.
    Kol MA; de Kroon AI; Killian JA; de Kruijff B
    Biochemistry; 2004 Mar; 43(10):2673-81. PubMed ID: 15005602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactive fatty acids are unable to flip-flop across the lipid bilayer.
    Jezek P; Modrianský M; Garlid KD
    FEBS Lett; 1997 May; 408(2):161-5. PubMed ID: 9187359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes of intrinsic membrane potentials induced by flip-flop of long-chain fatty acids.
    Pohl EE; Peterson U; Sun J; Pohl P
    Biochemistry; 2000 Feb; 39(7):1834-9. PubMed ID: 10677234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatty acid transport: difficult or easy?
    Hamilton JA
    J Lipid Res; 1998 Mar; 39(3):467-81. PubMed ID: 9548581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; Pérez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane dynamics of the amphiphilic siderophore, acinetoferrin.
    Luo M; Fadeev EA; Groves JT
    J Am Chem Soc; 2005 Feb; 127(6):1726-36. PubMed ID: 15701007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The lantibiotic nisin induces transmembrane movement of a fluorescent phospholipid.
    Moll GN; Konings WN; Driessen AJ
    J Bacteriol; 1998 Dec; 180(24):6565-70. PubMed ID: 9852000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the Rate-Limiting Step in Fatty Acid Transport.
    Cheng V; Kimball DR; Conboy DJC
    J Phys Chem B; 2019 Aug; 123(33):7157-7168. PubMed ID: 31334654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport and Organization of Cholesterol in a Planar Solid-Supported Lipid Bilayer Depend on the Phospholipid Flip-Flop Rate.
    Yu T; Zhou G; Hu X; Ye S
    Langmuir; 2016 Nov; 32(44):11681-11689. PubMed ID: 27756133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.