These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 17951744)

  • 1. Fluorescence microscopy to study pressure between lipids in giant unilamellar vesicles.
    Celli A; Lee CY; Gratton E
    Methods Mol Biol; 2007; 400():333-9. PubMed ID: 17951744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. To see or not to see: lateral organization of biological membranes and fluorescence microscopy.
    Bagatolli LA
    Biochim Biophys Acta; 2006 Oct; 1758(10):1541-56. PubMed ID: 16854370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius.
    Bagatolli L; Gratton E; Khan TK; Chong PL
    Biophys J; 2000 Jul; 79(1):416-25. PubMed ID: 10866967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers.
    Bagatolli LA; Sanchez SA; Hazlett T; Gratton E
    Methods Enzymol; 2003; 360():481-500. PubMed ID: 12622164
    [No Abstract]   [Full Text] [Related]  

  • 5. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles.
    Bagatolli LA; Gratton E
    Biophys J; 1999 Oct; 77(4):2090-101. PubMed ID: 10512829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence detection of signs of sterol superlattice formation in lipid membranes.
    Chong PL; Venegas B; Olsher M
    Methods Mol Biol; 2007; 400():159-70. PubMed ID: 17951733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphoton excitation fluorescence microscopy in planar membrane systems.
    Brewer J; Bernardino de la Serna J; Wagner K; Bagatolli LA
    Biochim Biophys Acta; 2010 Jul; 1798(7):1301-8. PubMed ID: 20226161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Monitoring of Microphase Separation Behaviors in Cationic Liposomes Using HHC, DPH, and Laurdan: Estimation of the Local Electrostatic Potentials in Microdomains.
    Suga K; Akizaki K; Umakoshi H
    Langmuir; 2016 Apr; 32(15):3630-6. PubMed ID: 27022833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transition affects energy transfer efficiency in phospholipid vesicles.
    Kozyra KA; Heldt JR; Engelke M; Diehl HA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1153-61. PubMed ID: 15741115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant activity of hydroxytyrosyl esters studied in liposome models.
    Balducci V; Incerpi S; Stano P; Tofani D
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):600-610. PubMed ID: 29175103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct visualization of the lateral structure of giant vesicles composed of pseudo-binary mixtures of sulfatide, asialo-GM1 and GM1 with POPC.
    Rodi PM; Maggio B; Bagatolli LA
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):544-555. PubMed ID: 29106974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study.
    Chong PL; Wong PT
    Biochim Biophys Acta; 1993 Jul; 1149(2):260-6. PubMed ID: 8323945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Span 80 vesicles have a more fluid, flexible and "wet" surface than phospholipid liposomes.
    Hayashi K; Shimanouchi T; Kato K; Miyazaki T; Nakamura A; Umakoshi H
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):28-35. PubMed ID: 21621983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope.
    Dodes Traian MM; Flecha FLG; Levi V
    J Lipid Res; 2012 Mar; 53(3):609-616. PubMed ID: 22184757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins.
    Sánchez SA; Tricerri MA; Ossato G; Gratton E
    Biochim Biophys Acta; 2010 Jul; 1798(7):1399-408. PubMed ID: 20347719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength dependence of patman equilibration dynamics in phosphatidylcholine bilayers.
    Franchino H; Stevens E; Nelson J; Bell TA; Bell JD
    Biochim Biophys Acta; 2013 Feb; 1828(2):877-86. PubMed ID: 22954647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature and pH sensitivity of a stabilized self-nanoemulsion formed using an ionizable lipid-like material via an oil-to-surfactant transition.
    Tanaka H; Oasa S; Kinjo M; Tange K; Nakai Y; Harashima H; Akita H
    Colloids Surf B Biointerfaces; 2017 Mar; 151():95-101. PubMed ID: 27987460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imidazolium Salts Mimicking the Structure of Natural Lipids Exploit Remarkable Properties Forming Lamellar Phases and Giant Vesicles.
    Drücker P; Rühling A; Grill D; Wang D; Draeger A; Gerke V; Glorius F; Galla HJ
    Langmuir; 2017 Feb; 33(6):1333-1342. PubMed ID: 27935708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.