These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17951748)

  • 21. Measurement of membrane rigidity on trapped unilamellar phospholipid vesicles by using differential confocal microscopy.
    Liu TH; Xiao JL; Lee CH; Lin JY
    Appl Opt; 2011 Jul; 50(19):3311-5. PubMed ID: 21743534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements.
    Saucedo-A T; De la Torre-Ibarra MH; Santoyo FM; Moreno I
    Opt Express; 2010 Sep; 18(19):19867-75. PubMed ID: 20940878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shapes of phospholipid [correction of phosholipid] vesicles with beadlike protrusions.
    Bozic B; Gomiscek G; Kralj-Iglic V; Svetina S; Zeks B
    Eur Biophys J; 2002 Dec; 31(7):487-96. PubMed ID: 12451418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Moving live dissociated neurons with an optical tweezer.
    Pine J; Chow G
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1184-8. PubMed ID: 19272931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microelectrophoresis in a laser trap: a platform for measuring electrokinetic interactions and flow properties within microstructures.
    Kahl V; Gansen A; Galneder R; Rädler JO
    Rev Sci Instrum; 2009 Jul; 80(7):073704. PubMed ID: 19655953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic relaxation drives expulsion in giant unilamellar vesicles.
    Leirer CT; Wunderlich B; Wixforth A; Schneider MF
    Phys Biol; 2009 Apr; 6(1):016011. PubMed ID: 19342768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane nanotubes drawn by optical tweezers transmit electrical signals between mammalian cells over long distances.
    Pascoal P; Kosanic D; Gjoni M; Vogel H
    Lab Chip; 2010 Sep; 10(17):2235-41. PubMed ID: 20661503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing Raman tweezers by phase-sensitive detection.
    Rusciano G; De Luca AC; Sasso A; Pesce G
    Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Budding of giant unilamellar vesicles induced by an amphitropic protein β2-glycoprotein I.
    Kovačič J; Božič B; Svetina S
    Biophys Chem; 2010 Nov; 152(1-3):46-54. PubMed ID: 20719426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shape determination of attached fluctuating phospholipid vesicles.
    Sevsek F; Gomisccek G
    Comput Methods Programs Biomed; 2004 Mar; 73(3):189-94. PubMed ID: 14980400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.
    Conkey DB; Trivedi RP; Pavani SR; Smalyukh II; Piestun R
    Opt Express; 2011 Feb; 19(5):3835-42. PubMed ID: 21369208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deformation of phospholipid vesicles in an optical stretcher.
    Delabre U; Feld K; Crespo E; Whyte G; Sykes C; Seifert U; Guck J
    Soft Matter; 2015 Aug; 11(30):6075-88. PubMed ID: 26135540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase transition induced adhesion of giant unilamellar vesicles.
    Franke T; Leirer C; Wixforth A; Schneider MF
    Chemphyschem; 2009 Nov; 10(16):2858-61. PubMed ID: 19598193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.
    Wang C; Chowdhury S; Gupta SK; Losert W
    J Biomed Opt; 2013 Apr; 18(4):045001. PubMed ID: 23545852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.
    Wesołowska O; Michalak K; Maniewska J; Hendrich AB
    Acta Biochim Pol; 2009; 56(1):33-9. PubMed ID: 19287805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy.
    Cherney DP; Bridges TE; Harris JM
    Anal Chem; 2004 Sep; 76(17):4920-8. PubMed ID: 15373424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial fluorescence cross-correlation spectroscopy by means of a spatial light modulator.
    Blancquaert Y; Gao J; Derouard J; Delon A
    J Biophotonics; 2008 Oct; 1(5):408-18. PubMed ID: 19343664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dry micromanipulation of supramolecular giant vesicles on a silicon substrate: highly stable hydrogen-bond-directed nanosheet membrane.
    Sakaino H; Sawayama J; Kabashima S; Yoshikawa I; Araki K
    J Am Chem Soc; 2012 Sep; 134(38):15684-7. PubMed ID: 22978621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.