These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17951755)

  • 21. Macroscopic properties of phospholipid vesicles with a contact angle between the membrane domains.
    Bozic B; Majhenc J
    Chemphyschem; 2009 Nov; 10(16):2862-70. PubMed ID: 19746504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulating the size and stabilization of lipid raft-like domains and using calcium ions as their probe.
    Szekely O; Schilt Y; Steiner A; Raviv U
    Langmuir; 2011 Dec; 27(24):14767-75. PubMed ID: 22066979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of integral proteins in the phase stability of a lipid bilayer: application to raft formation in cell membranes.
    Gómez J; Sagués F; Reigada R
    J Chem Phys; 2010 Apr; 132(13):135104. PubMed ID: 20387961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ceramide promotes restructuring of model raft membranes.
    Johnston I; Johnston LJ
    Langmuir; 2006 Dec; 22(26):11284-9. PubMed ID: 17154617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology.
    Heberle FA; Doktorova M; Goh SL; Standaert RF; Katsaras J; Feigenson GW
    J Am Chem Soc; 2013 Oct; 135(40):14932-5. PubMed ID: 24041024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A lipid matrix model of membrane raft structure.
    Quinn PJ
    Prog Lipid Res; 2010 Oct; 49(4):390-406. PubMed ID: 20478335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-field scanning optical microscopy to identify membrane microdomains.
    Ianoul A; Johnston LJ
    Methods Mol Biol; 2007; 400():469-80. PubMed ID: 17951753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visualizing association of N-ras in lipid microdomains: influence of domain structure and interfacial adsorption.
    Nicolini C; Baranski J; Schlummer S; Palomo J; Lumbierres-Burgues M; Kahms M; Kuhlmann J; Sanchez S; Gratton E; Waldmann H; Winter R
    J Am Chem Soc; 2006 Jan; 128(1):192-201. PubMed ID: 16390147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains.
    Loura LM; Fernandes F; Prieto M
    Eur Biophys J; 2010 Mar; 39(4):589-607. PubMed ID: 19844701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis.
    Oncul S; Klymchenko AS; Kucherak OA; Demchenko AP; Martin S; Dontenwill M; Arntz Y; Didier P; Duportail G; Mély Y
    Biochim Biophys Acta; 2010 Jul; 1798(7):1436-43. PubMed ID: 20100458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells.
    London E
    Biochim Biophys Acta; 2005 Dec; 1746(3):203-20. PubMed ID: 16225940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.
    Towles KB; Brown AC; Wrenn SP; Dan N
    Biophys J; 2007 Jul; 93(2):655-67. PubMed ID: 17449659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity.
    Vogel A; Nikolaus J; Weise K; Triola G; Waldmann H; Winter R; Herrmann A; Huster D
    Biol Chem; 2014 Jul; 395(7-8):779-89. PubMed ID: 24526608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of cholesterol in lipid raft formation: lessons from lipid model systems.
    Silvius JR
    Biochim Biophys Acta; 2003 Mar; 1610(2):174-83. PubMed ID: 12648772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria.
    Huang Z; London E
    Chem Phys Lipids; 2016 Sep; 199():11-16. PubMed ID: 26964703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into lipid raft structure and formation from experiments in model membranes.
    London E
    Curr Opin Struct Biol; 2002 Aug; 12(4):480-6. PubMed ID: 12163071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence methods to detect phase boundaries in lipid bilayer mixtures.
    Heberle FA; Buboltz JT; Stringer D; Feigenson GW
    Biochim Biophys Acta; 2005 Dec; 1746(3):186-92. PubMed ID: 15992943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature.
    Lingwood D; Ries J; Schwille P; Simons K
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):10005-10. PubMed ID: 18621689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypothesis: could the signalling function of membrane microdomains involve a localized transition of lipids from liquid to solid state?
    Joly E
    BMC Cell Biol; 2004 Jan; 5():3. PubMed ID: 14731307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.