These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17951827)

  • 1. IEM: an algorithm for iterative enhancement of motifs using comparative genomics data.
    Zeng E; Mathee K; Narasimhan G
    Comput Syst Bioinformatics Conf; 2007; 6():227-35. PubMed ID: 17951827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics reveals unusually long motifs in mammalian genomes.
    Jones NC; Pevzner PA
    Bioinformatics; 2006 Jul; 22(14):e236-42. PubMed ID: 16873477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting transcription factor binding sites using local over-representation and comparative genomics.
    Defrance M; Touzet H
    BMC Bioinformatics; 2006 Aug; 7():396. PubMed ID: 16945132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining comparative genomics with de novo motif discovery to identify human transcription factor DNA-binding motifs.
    Mao L; Zheng WJ
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S21. PubMed ID: 17217514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On counting position weight matrix matches in a sequence, with application to discriminative motif finding.
    Sinha S
    Bioinformatics; 2006 Jul; 22(14):e454-63. PubMed ID: 16873507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences.
    Pavesi G; Zambelli F; Pesole G
    BMC Bioinformatics; 2007 Feb; 8():46. PubMed ID: 17286865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deterministic motif finding algorithm with application to the human genome.
    Hon LS; Jain AN
    Bioinformatics; 2006 May; 22(9):1047-54. PubMed ID: 16455748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Weeder for the discovery of conserved transcription factor binding sites.
    Pavesi G; Pesole G
    Curr Protoc Bioinformatics; 2006 Oct; Chapter 2():Unit 2.11. PubMed ID: 18428764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEAKS: identification of regulatory motifs by their position in DNA sequences.
    Bellora N; Farré D; Mar Albà M
    Bioinformatics; 2007 Jan; 23(2):243-4. PubMed ID: 17098773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TFBScluster: a resource for the characterization of transcriptional regulatory networks.
    Donaldson IJ; Chapman M; Göttgens B
    Bioinformatics; 2005 Jul; 21(13):3058-9. PubMed ID: 15855248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio identification of putative human transcription factor binding sites by comparative genomics.
    Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M
    BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE.
    Foat BC; Morozov AV; Bussemaker HJ
    Bioinformatics; 2006 Jul; 22(14):e141-9. PubMed ID: 16873464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding motifs from all sequences with and without binding sites.
    Leung HC; Chin FY
    Bioinformatics; 2006 Sep; 22(18):2217-23. PubMed ID: 16870937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved benchmarks for computational motif discovery.
    Sandve GK; Abul O; Walseng V; Drabløs F
    BMC Bioinformatics; 2007 Jun; 8():193. PubMed ID: 17559676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT
    Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MatInspector and beyond: promoter analysis based on transcription factor binding sites.
    Cartharius K; Frech K; Grote K; Klocke B; Haltmeier M; Klingenhoff A; Frisch M; Bayerlein M; Werner T
    Bioinformatics; 2005 Jul; 21(13):2933-42. PubMed ID: 15860560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding optimal degenerate patterns in DNA sequences.
    Shinozaki D; Akutsu T; Maruyama O
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii206-14. PubMed ID: 14534191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative analysis of relative occurrence of transcription factor binding sites in vertebrate genomes and gene promoter areas.
    Stepanova M; Tiazhelova T; Skoblov M; Baranova A
    Bioinformatics; 2005 May; 21(9):1789-96. PubMed ID: 15699025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using PhyloCon to identify conserved regulatory motifs.
    Wang T
    Curr Protoc Bioinformatics; 2007 Sep; Chapter 2():Unit 2.12. PubMed ID: 18428790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.