BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17951850)

  • 1. Temperature elevation in the eye of anatomically based human head models for plane-wave exposures.
    Hirata A; Watanabe S; Fujiwara O; Kojima M; Sasaki K; Shiozawa T
    Phys Med Biol; 2007 Nov; 52(21):6389-99. PubMed ID: 17951850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure.
    Keshvari J; Keshvari R; Lang S
    Phys Med Biol; 2006 Mar; 51(6):1463-77. PubMed ID: 16510956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.
    Hirata A; Laakso I; Oizumi T; Hanatani R; Chan KH; Wiart J
    Phys Med Biol; 2013 Feb; 58(4):903-21. PubMed ID: 23337764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.
    Hirata A; Asano T; Fujiwara O
    Phys Med Biol; 2007 Aug; 52(16):5013-23. PubMed ID: 17671350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correlation between mass-averaged SAR and temperature elevation in the human head model exposed to RF near-fields from 1 to 6 GHz.
    Hirata A; Fujiwara O
    Phys Med Biol; 2009 Dec; 54(23):7227-38. PubMed ID: 19920306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz.
    Hirata A; Sugiyama H; Kojima M; Kawai H; Yamashiro Y; Fujiwara O; Watanabe S; Sasaki K
    Phys Med Biol; 2008 Jun; 53(12):3391-404. PubMed ID: 18523344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz.
    Keshvari J; Lang S
    Phys Med Biol; 2005 Sep; 50(18):4355-69. PubMed ID: 16148398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz.
    Laakso I
    Phys Med Biol; 2009 Jun; 54(11):3393-404. PubMed ID: 19436102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radio frequency-induced temperature elevations in the human head considering small anatomical structures.
    Schmid G; Uberbacher R; Samaras T
    Radiat Prot Dosimetry; 2007; 124(1):15-20. PubMed ID: 17595205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical evaluation of SAR distribution and temperature changes around a metallic plate in the head of a RF exposed worker.
    McIntosh RL; Anderson V; McKenzie RJ
    Bioelectromagnetics; 2005 Jul; 26(5):377-88. PubMed ID: 15924346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic power absorption and temperature changes due to brain machine interface operation.
    Ibrahim TS; Abraham D; Rennaker RL
    Ann Biomed Eng; 2007 May; 35(5):825-34. PubMed ID: 17334681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postured voxel-based human models for electromagnetic dosimetry.
    Nagaoka T; Watanabe S
    Phys Med Biol; 2008 Dec; 53(24):7047-61. PubMed ID: 19015577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE EFFECT OF GAZE ANGLE ON THE EVALUATIONS OF SAR AND TEMPERATURE RISE IN HUMAN EYE UNDER PLANE-WAVE EXPOSURES FROM 0.9 TO 10 GHZ.
    Diao Y; Leung SW; Chan KH; Sun W; Siu YM; Kong R
    Radiat Prot Dosimetry; 2016 Dec; 172(4):393-400. PubMed ID: 26705357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal elevation in the human eye and head due to the operation of a retinal prosthesis.
    Gosalia K; Weiland J; Humayun M; Lazzi G
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1469-77. PubMed ID: 15311834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz.
    Wainwright PR
    Phys Med Biol; 2007 Jun; 52(12):3335-50. PubMed ID: 17664547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.
    Hirata A; Asano T; Fujiwara O
    Phys Med Biol; 2008 Sep; 53(18):5223-38. PubMed ID: 18728308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computation of temperature elevation in rabbit eye irradiated by 2.45-GHz microwaves with different field configurations.
    Hirata A; Watanabe S; Taki M; Fujiwara O; Kojima M; Sasaki K
    Health Phys; 2008 Feb; 94(2):134-44. PubMed ID: 18188048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of electromagnetic polarization on the whole-body averaged SAR in children for plane-wave exposures.
    Hirata A; Ito N; Fujiwara O
    Phys Med Biol; 2009 Feb; 54(4):N59-65. PubMed ID: 19141885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculated SAR distributions in a human voxel phantom due to the reflection of electromagnetic fields from a ground plane between 65 MHz and 2 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2008 May; 53(9):2277-89. PubMed ID: 18401062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI-induced heating of selected thin wire metallic implants-- laboratory and computational studies-- findings and new questions raised.
    Bassen H; Kainz W; Mendoza G; Kellom T
    Minim Invasive Ther Allied Technol; 2006; 15(2):76-84. PubMed ID: 16754190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.