BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17952172)

  • 1. Fluorescence lifetime imaging by using time-gated data acquisition.
    Soloviev VY; Tahir KB; McGinty J; Elson DS; Neil MA; French PM; Arridge SR
    Appl Opt; 2007 Oct; 46(30):7384-91. PubMed ID: 17952172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-gated Fourier-domain optical coherence tomography.
    Muller MS; Webster PJ; Fraser JM
    Opt Lett; 2007 Nov; 32(22):3336-8. PubMed ID: 18026299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjoint time domain method for fluorescent imaging in turbid media.
    Soloviev VY; D'Andrea C; Brambilla M; Valentini G; Schulz RB; Cubeddu R; Arridge SR
    Appl Opt; 2008 May; 47(13):2303-11. PubMed ID: 18449295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional Fluorescence Lifetime Imaging with a Single Plane Illumination Microscope provides an improved signal to noise ratio.
    Greger K; Neetz MJ; Reynaud EG; Stelzer EH
    Opt Express; 2011 Oct; 19(21):20743-50. PubMed ID: 21997084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging of fluorescence in highly scattering media.
    Chang J; Graber HL; Barbour RL
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):810-22. PubMed ID: 9282473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons.
    Niedre M; Ntziachristos V
    Opt Lett; 2010 Feb; 35(3):369-71. PubMed ID: 20125724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence.
    Soloviev VY; McGinty J; Tahir KB; Neil MA; Sardini A; Hajnal JV; Arridge SR; French PM
    Opt Lett; 2007 Jul; 32(14):2034-6. PubMed ID: 17632634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entangled-photon coincidence fluorescence imaging.
    Scarcelli G; Yun SH
    Opt Express; 2008 Sep; 16(20):16189-94. PubMed ID: 18825257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography.
    Seelamantula CS; Villiger ML; Leitgeb RA; Unser M
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1762-71. PubMed ID: 18594634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined reconstruction of fluorescent and optical parameters using time-resolved data.
    Soloviev VY; D'Andrea C; Valentini G; Cubeddu R; Arridge SR
    Appl Opt; 2009 Jan; 48(1):28-36. PubMed ID: 19107168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors.
    Zhang L; Gao F; He H; Zhao H
    Opt Express; 2008 May; 16(10):7214-23. PubMed ID: 18545426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay.
    Lin PY; Lee SS; Chang CS; Kao FJ
    Opt Express; 2012 May; 20(10):11445-50. PubMed ID: 22565764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional optical detection based on pH dependent fluorescence lifetime.
    Gannot I; Ron I; Hekmat F; Chernomordik V; Gandjbakhche A
    Lasers Surg Med; 2004; 35(5):342-8. PubMed ID: 15611954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real time random laser properties of Rhodamine-doped di-ureasil hybrids.
    Pecoraro E; García-Revilla S; Ferreira RA; Balda R; Carlos LD; Fernández J
    Opt Express; 2010 Mar; 18(7):7470-8. PubMed ID: 20389769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved Fourier optical diffuse tomography.
    Xu M; Lax M; Alfano RR
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1535-42. PubMed ID: 11444546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acidity effects on the fluorescence properties and adsorptive behavior of rhodamine 6G molecules at the air-water interface studied with confocal fluorescence microscopy.
    Zheng XY; Wachi M; Harata A; Hatano Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1085-90. PubMed ID: 15084327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements.
    Tosi A; Dalla Mora A; Zappa F; Gulinatti A; Contini D; Pifferi A; Spinelli L; Torricelli A; Cubeddu R
    Opt Express; 2011 May; 19(11):10735-46. PubMed ID: 21643330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging.
    Soloviev VY
    Med Phys; 2006 Nov; 33(11):4176-83. PubMed ID: 17153396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered nonlinear photonic quasicrystals for multi-frequency terahertz manipulation.
    Qin Y; Zhang C; Zhu D; Zhu Y; Guo H; You G; Tang S
    Opt Express; 2009 Jul; 17(14):11558-64. PubMed ID: 19582072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements.
    Li J; Chan RK; Wang X
    Opt Express; 2009 Nov; 17(23):21083-90. PubMed ID: 19997347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.