BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17952601)

  • 1. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible.
    Hellmich C; Kober C; Erdmann B
    Ann Biomed Eng; 2008 Jan; 36(1):108-22. PubMed ID: 17952601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravoxel bone micromechanics for microCT-based finite element simulations.
    Blanchard R; Dejaco A; Bongaers E; Hellmich C
    J Biomech; 2013 Oct; 46(15):2710-21. PubMed ID: 24016680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography.
    Scheiner S; Sinibaldi R; Pichler B; Komlev V; Renghini C; Vitale-Brovarone C; Rustichelli F; Hellmich C
    Biomaterials; 2009 Apr; 30(12):2411-9. PubMed ID: 19135717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic computational modelling of bony structures from CT data: An almost automatic procedure.
    Toniolo I; Salmaso C; Bruno G; De Stefani A; Stefanini C; Gracco ALT; Carniel EL
    Comput Methods Programs Biomed; 2020 Jun; 189():105319. PubMed ID: 31951872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.
    Lu Y; Engelke K; Glueer CC; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1208-13. PubMed ID: 25500865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements.
    Taddei F; Schileo E; Helgason B; Cristofolini L; Viceconti M
    Med Eng Phys; 2007 Nov; 29(9):973-9. PubMed ID: 17169598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness.
    Giambini H; Dragomir-Daescu D; Nassr A; Yaszemski MJ; Zhao C
    J Biomech Eng; 2016 Sep; 138(9):0910031-7. PubMed ID: 27428281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible.
    Kober C; Erdmann B; Hellmich C; Sader R; Zeilhofer HF
    Comput Methods Biomech Biomed Engin; 2006 Apr; 9(2):91-101. PubMed ID: 16880160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.
    Nazemi SM; Cooper DM; Johnston JD
    Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and finite element study of a human mandible.
    Vollmer D; Meyer U; Joos U; Vègh A; Piffko J
    J Craniomaxillofac Surg; 2000 Apr; 28(2):91-6. PubMed ID: 10958421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.
    Nakamura K; Tajima K; Chen KK; Nagamatsu Y; Kakigawa H; Masumi SI
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1312-8. PubMed ID: 24077258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter study for the finite element modelling of long bones with computed-tomography-imaging-based stiffness distribution.
    Wullschleger L; Weisse B; Blaser D; Fürst AE
    Proc Inst Mech Eng H; 2010; 224(9):1095-107. PubMed ID: 21053774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone.
    Yeni YN; Christopherson GT; Dong XN; Kim DG; Fyhrie DP
    J Biomech Eng; 2005 Feb; 127(1):1-8. PubMed ID: 15868782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties.
    van Lenthe GH; Stauber M; Müller R
    Bone; 2006 Dec; 39(6):1182-9. PubMed ID: 16949356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone.
    Teo JC; Si-Hoe KM; Keh JE; Teoh SH
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):235-44. PubMed ID: 16356612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and radiological parameters for the characterization of jawbone.
    Stoppie N; Pattijn V; Van Cleynenbreugel T; Wevers M; Vander Sloten J; Ignace N
    Clin Oral Implants Res; 2006 Apr; 17(2):124-33. PubMed ID: 16584407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.