BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17952642)

  • 1. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers.
    Guthold M; Liu W; Sparks EA; Jawerth LM; Peng L; Falvo M; Superfine R; Hantgan RR; Lord ST
    Cell Biochem Biophys; 2007; 49(3):165-81. PubMed ID: 17952642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
    Maksudov F; Daraei A; Sesha A; Marx KA; Guthold M; Barsegov V
    Acta Biomater; 2021 Dec; 136():327-342. PubMed ID: 34606991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modular fibrinogen model that captures the stress-strain behavior of fibrin fibers.
    Averett RD; Menn B; Lee EH; Helms CC; Barker T; Guthold M
    Biophys J; 2012 Oct; 103(7):1537-44. PubMed ID: 23062346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-α Cross-links increase fibrin fiber elasticity and stiffness.
    Helms CC; Ariëns RA; Uitte de Willige S; Standeven KF; Guthold M
    Biophys J; 2012 Jan; 102(1):168-75. PubMed ID: 22225811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering.
    Vos BE; Martinez-Torres C; Burla F; Weisel JW; Koenderink GH
    Acta Biomater; 2020 Mar; 104():39-52. PubMed ID: 31923718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation.
    Li W; Sigley J; Pieters M; Helms CC; Nagaswami C; Weisel JW; Guthold M
    Biophys J; 2016 Mar; 110(6):1400-10. PubMed ID: 27028649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis of fibrin clot elasticity.
    Lim BB; Lee EH; Sotomayor M; Schulten K
    Structure; 2008 Mar; 16(3):449-59. PubMed ID: 18294856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular origins of the mechanical properties of fibrin.
    Falvo MR; Gorkun OV; Lord ST
    Biophys Chem; 2010 Nov; 152(1-3):15-20. PubMed ID: 20888119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical properties of single fibrin fibers.
    Liu W; Carlisle CR; Sparks EA; Guthold M
    J Thromb Haemost; 2010 May; 8(5):1030-6. PubMed ID: 20088938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin fibers have extraordinary extensibility and elasticity.
    Liu W; Jawerth LM; Sparks EA; Falvo MR; Hantgan RR; Superfine R; Lord ST; Guthold M
    Science; 2006 Aug; 313(5787):634. PubMed ID: 16888133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water.
    Brown AE; Litvinov RI; Discher DE; Purohit PK; Weisel JW
    Science; 2009 Aug; 325(5941):741-4. PubMed ID: 19661428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonuniform Internal Structure of Fibrin Fibers: Protein Density and Bond Density Strongly Decrease with Increasing Diameter.
    Li W; Sigley J; Baker SR; Helms CC; Kinney MT; Pieters M; Brubaker PH; Cubcciotti R; Guthold M
    Biomed Res Int; 2017; 2017():6385628. PubMed ID: 29130043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ultrastructure of fibrinogen-420 and the fibrin-420 clot.
    Mosesson MW; DiOrio JP; Hernandez I; Hainfeld JF; Wall JS; Grieninger G
    Biophys Chem; 2004 Dec; 112(2-3):209-14. PubMed ID: 15572250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3.
    Guthold M; Liu W; Stephens B; Lord ST; Hantgan RR; Erie DA; Taylor RM; Superfine R
    Biophys J; 2004 Dec; 87(6):4226-36. PubMed ID: 15465869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrin mechanical properties and their structural origins.
    Litvinov RI; Weisel JW
    Matrix Biol; 2017 Jul; 60-61():110-123. PubMed ID: 27553509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics, Energetics, and Structural Basis of Rupture of Fibrin Networks.
    Ramanujam RK; Maksudov F; Litvinov RI; Nagaswami C; Weisel JW; Tutwiler V; Barsegov V
    Adv Healthc Mater; 2023 Oct; 12(27):e2300096. PubMed ID: 37611209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.
    Hudson NE; Ding F; Bucay I; O'Brien ET; Gorkun OV; Superfine R; Lord ST; Dokholyan NV; Falvo MR
    Biophys J; 2013 Jun; 104(12):2671-80. PubMed ID: 23790375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constitutive model for a maturing fibrin network.
    van Kempen THS; Bogaerds ACB; Peters GWM; van de Vosse FN
    Biophys J; 2014 Jul; 107(2):504-513. PubMed ID: 25028892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.