These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 17952777)
1. Probing the biogeochemistry of arsenic: response of two contrasting aquifer sediments from Cambodia to stimulation by arsenate and ferric iron. Pederick RL; Gault AG; Charnock JM; Polya DA; Lloyd JR J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1763-74. PubMed ID: 17952777 [TBL] [Abstract][Full Text] [Related]
2. Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Lear G; Song B; Gault AG; Polya DA; Lloyd JR Appl Environ Microbiol; 2007 Feb; 73(4):1041-8. PubMed ID: 17114326 [TBL] [Abstract][Full Text] [Related]
3. Indigenous arsenic(V)-reducing microbial communities in redox-fluctuating near-surface sediments of the Mekong Delta. Ying SC; Damashek J; Fendorf S; Francis CA Geobiology; 2015 Nov; 13(6):581-7. PubMed ID: 26466963 [TBL] [Abstract][Full Text] [Related]
4. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. Gnanaprakasam ET; Lloyd JR; Boothman C; Ahmed KM; Choudhury I; Bostick BC; van Geen A; Mailloux BJ mBio; 2017 Nov; 8(6):. PubMed ID: 29184025 [TBL] [Abstract][Full Text] [Related]
5. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Guo H; Zhang B; Li Y; Berner Z; Tang X; Norra S; Stüben D Environ Pollut; 2011 Apr; 159(4):876-83. PubMed ID: 21277054 [TBL] [Abstract][Full Text] [Related]
6. Isolation of an arsenate-respiring bacterium from a redox front in an arsenic-polluted aquifer in West Bengal, Bengal Basin. Osborne TH; McArthur JM; Sikdar PK; Santini JM Environ Sci Technol; 2015 Apr; 49(7):4193-9. PubMed ID: 25734617 [TBL] [Abstract][Full Text] [Related]
7. Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Mumford AC; Barringer JL; Benzel WM; Reilly PA; Young LY Water Res; 2012 Jun; 46(9):2859-68. PubMed ID: 22494492 [TBL] [Abstract][Full Text] [Related]
8. Arsenic bioremediation by biogenic iron oxides and sulfides. Omoregie EO; Couture RM; Van Cappellen P; Corkhill CL; Charnock JM; Polya DA; Vaughan D; Vanbroekhoven K; Lloyd JR Appl Environ Microbiol; 2013 Jul; 79(14):4325-35. PubMed ID: 23666325 [TBL] [Abstract][Full Text] [Related]
9. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments. Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936 [TBL] [Abstract][Full Text] [Related]
10. Arsenic(V) reduction in relation to Iron(III) transformation and molecular characterization of the structural and functional microbial community in sediments of a basin-fill aquifer in Northern Utah. Mirza BS; Muruganandam S; Meng X; Sorensen DL; Dupont RR; McLean JE Appl Environ Microbiol; 2014 May; 80(10):3198-208. PubMed ID: 24632255 [TBL] [Abstract][Full Text] [Related]
11. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments. Das S; Liu CC; Jean JS; Lee CC; Yang HJ J Hazard Mater; 2016 Jun; 310():11-9. PubMed ID: 26897570 [TBL] [Abstract][Full Text] [Related]
12. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256 [TBL] [Abstract][Full Text] [Related]
13. Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing. Héry M; Rizoulis A; Sanguin H; Cooke DA; Pancost RD; Polya DA; Lloyd JR Environ Microbiol; 2015 Jun; 17(6):1857-69. PubMed ID: 24467551 [TBL] [Abstract][Full Text] [Related]
14. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Handley KM; Héry M; Lloyd JR Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300 [TBL] [Abstract][Full Text] [Related]
15. Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Héry M; Van Dongen BE; Gill F; Mondal D; Vaughan DJ; Pancost RD; Polya DA; Lloyd JR Geobiology; 2010 Mar; 8(2):155-68. PubMed ID: 20156294 [TBL] [Abstract][Full Text] [Related]
16. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Guo H; Liu Z; Ding S; Hao C; Xiu W; Hou W Environ Pollut; 2015 Aug; 203():50-59. PubMed ID: 25863882 [TBL] [Abstract][Full Text] [Related]
17. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603 [TBL] [Abstract][Full Text] [Related]
18. arrA is a reliable marker for As(V) respiration. Malasarn D; Saltikov CW; Campbell KM; Santini JM; Hering JG; Newman DK Science; 2004 Oct; 306(5695):455. PubMed ID: 15486292 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Lin B; Hyacinthe C; Bonneville S; Braster M; Van Cappellen P; Röling WF Environ Microbiol; 2007 Aug; 9(8):1956-68. PubMed ID: 17635542 [TBL] [Abstract][Full Text] [Related]
20. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan. Das S; Liu CC; Jean JS; Liu T Microb Ecol; 2016 Feb; 71(2):365-74. PubMed ID: 26219267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]