BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17952789)

  • 21. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production.
    Schmidt SA; Gukelberger E; Hermann M; Fiedler F; Großmann B; Hoinkis J; Ghosh A; Chatterjee D; Bundschuh J
    J Hazard Mater; 2016 Nov; 318():671-678. PubMed ID: 27497227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A post-implementation evaluation of ceramic water filters distributed to tsunami-affected communities in Sri Lanka.
    Casanova LM; Walters A; Naghawatte A; Sobsey MD
    J Water Health; 2012 Jun; 10(2):209-20. PubMed ID: 22717746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal.
    Kleinert S; Muehe EM; Posth NR; Dippon U; Daus B; Kappler A
    Environ Sci Technol; 2011 Sep; 45(17):7533-41. PubMed ID: 21761933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Development and evaluation of a composite structural filter for removal of arsenic in drinking water].
    Zhao Y; Chen Y; Lin S; Wang C; Cao Y
    Wei Sheng Yan Jiu; 2004 Jul; 33(4):413-5. PubMed ID: 15461261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency of Silver Impregnated Porous Pot (SIPP) filters for production of clean potable water.
    Mahlangu O; Mamba B; Momba M
    Int J Environ Res Public Health; 2012 Aug; 9(9):3014-29. PubMed ID: 23202668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preventing diarrhoea with household ceramic water filters: assessment of a pilot project in Bolivia.
    Clasen TF; Brown J; Collin SM
    Int J Environ Health Res; 2006 Jun; 16(3):231-9. PubMed ID: 16611567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Value of arsenic-free drinking water to rural households in Bangladesh.
    Ahmad J; Goldar B; Misra S
    J Environ Manage; 2005 Jan; 74(2):173-85. PubMed ID: 15627470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Pilot scale study on emergent treatment for As (III) pollution in water source].
    Yao JJ; Gao NY; Xia SJ; Chen BB
    Huan Jing Ke Xue; 2010 Feb; 31(2):324-30. PubMed ID: 20391697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effectiveness of household reverse-osmosis systems in a Western U.S. region with high arsenic in groundwater.
    Walker M; Seiler RL; Meinert M
    Sci Total Environ; 2008 Jan; 389(2-3):245-52. PubMed ID: 17919687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flocculant-disinfectant point-of-use water treatment for reducing arsenic exposure in rural Bangladesh.
    Norton DM; Rahman M; Shane AL; Hossain Z; Kulick RM; Bhuiyan MI; Wahed MA; Yunus M; Islam MS; Breiman RF; Henderson A; Keswick BH; Luby SP
    Int J Environ Health Res; 2009 Feb; 19(1):17-29. PubMed ID: 19241244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing arsenic mitigation in Bangladesh: findings from institutional, psychological, and technical investigations.
    Johnston R; Hug SJ; Inauen J; Khan NI; Mosler HJ; Yang H
    Sci Total Environ; 2014 Aug; 488-489():477-83. PubMed ID: 24377677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Economic benefits of arsenic removal from ground water--a case study from West Bengal, India.
    Roy J
    Sci Total Environ; 2008 Jul; 397(1-3):1-12. PubMed ID: 18407317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological filtration for removal of arsenic from drinking water.
    Pokhrel D; Viraraghavan T
    J Environ Manage; 2009 Apr; 90(5):1956-61. PubMed ID: 19231065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.
    Lea M
    Curr Protoc Microbiol; 2008 May; Chapter 1():Unit 1G.1.1-1G.1.28. PubMed ID: 18729053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrification, denitrification and ammonification in point-of-use biosand filters in rural Cambodia.
    Murphy HM; McBean EA; Farahbakhsh K
    J Water Health; 2010 Dec; 8(4):803-17. PubMed ID: 20705990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of time and point-of-use devices on arsenic levels in Southeastern Michigan drinking water, USA.
    Slotnick MJ; Meliker JR; Nriagu JO
    Sci Total Environ; 2006 Oct; 369(1-3):42-50. PubMed ID: 16750243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A field based evaluation of household arsenic removal technologies for the treatment of drinking water.
    Sutherland D; Swash PM; Macqueen AC; McWilliam LE; Ross DJ; Wood SC
    Environ Technol; 2002 Dec; 23(12):1385-403. PubMed ID: 12523510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reducing diarrhea through the use of household-based ceramic water filters: a randomized, controlled trial in rural Bolivia.
    Clasen TF; Brown J; Collin S; Suntura O; Cairncross S
    Am J Trop Med Hyg; 2004 Jun; 70(6):651-7. PubMed ID: 15211008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial contamination of drinking water and the economic burden of illnesses for the Nepalese households.
    Atreya K; Panthee S; Sharma P
    Int J Environ Health Res; 2006 Oct; 16(5):385-90. PubMed ID: 16990179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a new water treatment for point-of-use household applications to remove microorganisms and arsenic from drinking water.
    Souter PF; Cruickshank GD; Tankerville MZ; Keswick BH; Ellis BD; Langworthy DE; Metz KA; Appleby MR; Hamilton N; Jones AL; Perry JD
    J Water Health; 2003 Jun; 1(2):73-84. PubMed ID: 15382736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.