These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 17952867)
1. Estimates of genetic parameters for Holstein cows for test-day yield traits with a random regression cubic spline model. DeGroot BJ; Keown JF; Van Vleck LD; Kachman SD Genet Mol Res; 2007 Jun; 6(2):434-44. PubMed ID: 17952867 [TBL] [Abstract][Full Text] [Related]
2. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows. Bohmanova J; Miglior F; Jamrozik J; Misztal I; Sullivan PG J Dairy Sci; 2008 Sep; 91(9):3627-38. PubMed ID: 18765621 [TBL] [Abstract][Full Text] [Related]
3. Genetic analysis of milk production traits of polish black and white cattle using large-scale random regression test-day models. Strabel T; Jamrozik J J Dairy Sci; 2006 Aug; 89(8):3152-63. PubMed ID: 16840632 [TBL] [Abstract][Full Text] [Related]
4. Variance components for test-day milk, fat, and protein yield, and somatic cell score for analyzing management information. Caccamo M; Veerkamp RF; de Jong G; Pool MH; Petriglieri R; Licitra G J Dairy Sci; 2008 Aug; 91(8):3268-76. PubMed ID: 18650304 [TBL] [Abstract][Full Text] [Related]
5. Genetic parameter estimates of portuguese dairy cows for milk, fat, and protein using a spline test-day model. Silvestre AM; Petim-Batista F; Colaço J J Dairy Sci; 2005 Mar; 88(3):1225-30. PubMed ID: 15738256 [TBL] [Abstract][Full Text] [Related]
6. Use of test-day records beyond three hundred five days for estimation of three hundred five-day breeding values for production traits and somatic cell score of Canadian Holsteins. Bohmanova J; Miglior F; Jamrozik J J Dairy Sci; 2009 Oct; 92(10):5314-25. PubMed ID: 19762849 [TBL] [Abstract][Full Text] [Related]
7. Genetic components of heat stress for dairy cattle with multiple lactations. Aguilar I; Misztal I; Tsuruta S J Dairy Sci; 2009 Nov; 92(11):5702-11. PubMed ID: 19841230 [TBL] [Abstract][Full Text] [Related]
8. Genetic parameters for tunisian holsteins using a test-day random regression model. Hammami H; Rekik B; Soyeurt H; Ben Gara A; Gengler N J Dairy Sci; 2008 May; 91(5):2118-26. PubMed ID: 18420643 [TBL] [Abstract][Full Text] [Related]
9. Random herd curves in a test-day model for milk, fat, and protein production of dairy cattle in The Netherlands. de Roos AP; Harbers AG; de Jong G J Dairy Sci; 2004 Aug; 87(8):2693-701. PubMed ID: 15328295 [TBL] [Abstract][Full Text] [Related]
10. Genetic parameters of milking frequency and milk production traits in Canadian Holsteins milked by an automated milking system. Nixon M; Bohmanova J; Jamrozik J; Schaeffer LR; Hand K; Miglior F J Dairy Sci; 2009 Jul; 92(7):3422-30. PubMed ID: 19528620 [TBL] [Abstract][Full Text] [Related]
11. Relationships between milk yield and somatic cell score in Canadian Holsteins from simultaneous and recursive random regression models. Jamrozik J; Bohmanova J; Schaeffer LR J Dairy Sci; 2010 Mar; 93(3):1216-33. PubMed ID: 20172242 [TBL] [Abstract][Full Text] [Related]
12. Genetic parameters for first and second lactation milk yields of Polish black and white cattle with random regression test-day models. Strabel T; Misztal I J Dairy Sci; 1999 Dec; 82(12):2805-10. PubMed ID: 10629829 [TBL] [Abstract][Full Text] [Related]
13. Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows. Bignardi AB; El Faro L; Torres Júnior RA; Cardoso VL; Machado PF; Albuquerque LG Genet Mol Res; 2011 Oct; 10(4):3565-75. PubMed ID: 22057992 [TBL] [Abstract][Full Text] [Related]
14. Genotype by environment interaction for fertility, survival, and milk production traits in Australian dairy cattle. Haile-Mariam M; Carrick MJ; Goddard ME J Dairy Sci; 2008 Dec; 91(12):4840-53. PubMed ID: 19038960 [TBL] [Abstract][Full Text] [Related]
15. Genetic evaluation of Australian dairy cattle for somatic cell scores using multi-trait random regression test-day model. Konstantinov KV; Beard KT; Goddard ME; van der Werf JH J Anim Breed Genet; 2009 Jun; 126(3):209-15. PubMed ID: 19646149 [TBL] [Abstract][Full Text] [Related]
16. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models. Bignardi AB; El Faro L; Cardoso VL; Machado PF; Albuquerque LG J Dairy Sci; 2009 Sep; 92(9):4634-40. PubMed ID: 19700726 [TBL] [Abstract][Full Text] [Related]
17. Estimation of genetic parameters for test day records of somatic cell score. Reents R; Jamrozik J; Schaeffer LR; Dekkers JC J Dairy Sci; 1995 Dec; 78(12):2847-57. PubMed ID: 8675767 [TBL] [Abstract][Full Text] [Related]
18. Heritability and correlations among body condition score loss, body condition score, production and reproductive performance. Dechow CD; Rogers GW; Clay JS J Dairy Sci; 2002 Nov; 85(11):3062-70. PubMed ID: 12487473 [TBL] [Abstract][Full Text] [Related]
19. The effect of test day models on the estimation of genetic parameters and breeding values for dairy yield traits. Swalve HH J Dairy Sci; 1995 Apr; 78(4):929-38. PubMed ID: 7790586 [TBL] [Abstract][Full Text] [Related]
20. Use of a test day model for dairy goat milk yield across lactations in Germany. Zumbach B; Tsuruta S; Misztal I; Peters KJ J Anim Breed Genet; 2008 Jun; 125(3):160-7. PubMed ID: 18479266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]