BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 179532)

  • 1. Studies by electron-paramagnetic-resonance spectroscopy on the mechanism of action of xanthine dehydrogenase from Veillonella alcalescens.
    Dalton H; Lowe DJ; Pawlik T; Bray RC
    Biochem J; 1976 Feb; 153(2):287-95. PubMed ID: 179532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase.
    Barber MJ; Bray RC; Lowe DJ; Coughlan MP
    Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic coupling of the molybdenum and iron-sulphur centres in xanthine oxidase and xanthine dehydrogenases.
    Lowe DJ; Bray RC
    Biochem J; 1978 Mar; 169(3):471-9. PubMed ID: 25647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase.
    Cammack R; Barber MJ; Bray RC
    Biochem J; 1976 Aug; 157(2):469-78. PubMed ID: 183752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-sulphur systems in some isolated multi-component oxidative enzymes.
    Bray RC; Barber MJ; Dalton H; Lowe DJ; Coughlan MP
    Biochem Soc Trans; 1975; 3(4):479-82. PubMed ID: 1237425
    [No Abstract]   [Full Text] [Related]  

  • 6. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation--reduction potentials of turkey liver xanthine dehydrogenase and the origins of oxidase and dehydrogenase behaviour in molybdenum-containing hydroxylases.
    Barber MJ; Bray RC; Cammack R; Coughlan MP
    Biochem J; 1977 May; 163(2):279-89. PubMed ID: 869927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive half-reaction of xanthine oxidase: mechanistic role of the species giving rise to the "rapid type 1" molybdenum(V) electron paramagnetic resonance signal.
    Hille R; Kim JH; Hemann C
    Biochemistry; 1993 Apr; 32(15):3973-80. PubMed ID: 8385992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases.
    Wahl RC; Rajagopalan KV
    J Biol Chem; 1982 Feb; 257(3):1354-9. PubMed ID: 6276383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new non-functional form of milk xanthine oxidase containing stable quinquivalent molybdenum.
    Lowe DJ; Barber MJ; Pawlik RT; Bray RC
    Biochem J; 1976 Apr; 155(1):81-5. PubMed ID: 180983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-spin interaction between molybdenum and one of the iron-sulphur systems of xanthine oxidase and its relevance to the enzymic mechanism.
    Lowe DJ; Lynden-Bell RM; Bray RC
    Biochem J; 1972 Nov; 130(1):239-49. PubMed ID: 4347785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex-formation between reduced xanthine oxidase and purine substrates demonstrated by electron paramagnetic resonance.
    Pick FM; Bray RC
    Biochem J; 1969 Oct; 114(4):735-42. PubMed ID: 4310056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthine dehydrogenase from Drosophila melanogaster: purification and properties of the wild-type enzyme and of a variant lacking iron-sulfur centers.
    Hughes RK
    Biochemistry; 1992 Mar; 31(12):3073-83. PubMed ID: 1313286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of xanthine dehydrogenase from the anaerobic bacterium Veillonella atypica and identification of a molybdopterin-cytosine-dinucleotide-containing molybdenum cofactor.
    Gremer L; Meyer O
    Eur J Biochem; 1996 Jun; 238(3):862-6. PubMed ID: 8706691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of xanthine oxidase and xanthine dehydrogenase by nitric oxide. Nitric oxide converts reduced xanthine-oxidizing enzymes into the desulfo-type inactive form.
    Ichimori K; Fukahori M; Nakazawa H; Okamoto K; Nishino T
    J Biol Chem; 1999 Mar; 274(12):7763-8. PubMed ID: 10075667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron paramagnetic resonance and potentiometric studies of arsenite interaction with the molybdenum centers of xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: a specific stabilization of the molybdenum(V) oxidation state.
    Barber MJ; Siegel LM
    Biochemistry; 1983 Feb; 22(3):618-24. PubMed ID: 6301524
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of the molybdenum centres of native and desulpho xanthine oxidase. The nature of the cyanide-labile sulphur atom and the nature of the proton-accepting group.
    Gutteridge S; Tanner SJ; Bray RC
    Biochem J; 1978 Dec; 175(3):887-97. PubMed ID: 217354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-paramagnetic-resonance spectroscopy of complexes of xanthine oxidase with xanthine and uric acid.
    Bray RC; Barber MJ; Lowe DJ
    Biochem J; 1978 Jun; 171(3):653-8. PubMed ID: 208512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism.
    Doyle WA; Burke JF; Chovnick A; Dutton FL; Whittle JR; Bray RC
    Eur J Biochem; 1996 Aug; 239(3):782-95. PubMed ID: 8774727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.