These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 17953385)
1. [Research on thymopentin-loaded N-trimethyl chitosan nanoparticles administered through mouth]. Tang SW; Yuan XJ; Zhang ZR; Song QG; He Q Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Sep; 38(5):885-8. PubMed ID: 17953385 [TBL] [Abstract][Full Text] [Related]
2. Research on thymopentin loaded oral N-trimethyl chitosan nanoparticles. Yuan XJ; Zhang ZR; Song QG; He Q Arch Pharm Res; 2006 Sep; 29(9):795-9. PubMed ID: 17024854 [TBL] [Abstract][Full Text] [Related]
3. Box-Behnken optimization design and enhanced oral bioavailability of thymopentin-loaded poly (butyl cyanoacrylate) nanoparticles. Jin X; Huang A; Ping Q; Cao F; Su Z Pharmazie; 2011 May; 66(5):339-47. PubMed ID: 21699067 [TBL] [Abstract][Full Text] [Related]
4. Preparation and evaluation of poly-butylcyanoacrylate nanoparticles for oral delivery of thymopentin. He W; Jiang X; Zhang ZR J Pharm Sci; 2008 Jun; 97(6):2250-9. PubMed ID: 17853430 [TBL] [Abstract][Full Text] [Related]
5. Thymopentin-loaded pH-sensitive chitosan nanoparticles for oral administration: preparation, characterization, and pharmacodynamics. Zheng AP; Wang JC; Lu WL; Zhang X; Zhang H; Wang XQ; Zhang Q J Nanosci Nanotechnol; 2006; 6(9-10):2936-44. PubMed ID: 17048501 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies. Zheng Y; Cai Z; Song X; Chen Q; Bi Y; Li Y; Hou S J Drug Target; 2009 May; 17(4):294-303. PubMed ID: 19255895 [TBL] [Abstract][Full Text] [Related]
7. Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. Yin Y; Chen D; Qiao M; Lu Z; Hu H J Control Release; 2006 Dec; 116(3):337-45. PubMed ID: 17097180 [TBL] [Abstract][Full Text] [Related]
8. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Slütter B; Bal S; Keijzer C; Mallants R; Hagenaars N; Que I; Kaijzel E; van Eden W; Augustijns P; Löwik C; Bouwstra J; Broere F; Jiskoot W Vaccine; 2010 Aug; 28(38):6282-91. PubMed ID: 20638455 [TBL] [Abstract][Full Text] [Related]
9. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Yin L; Ding J; He C; Cui L; Tang C; Yin C Biomaterials; 2009 Oct; 30(29):5691-700. PubMed ID: 19615735 [TBL] [Abstract][Full Text] [Related]
10. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Amidi M; Romeijn SG; Verhoef JC; Junginger HE; Bungener L; Huckriede A; Crommelin DJ; Jiskoot W Vaccine; 2007 Jan; 25(1):144-53. PubMed ID: 16973248 [TBL] [Abstract][Full Text] [Related]
11. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Wang ZH; Wang ZY; Sun CS; Wang CY; Jiang TY; Wang SL Biomaterials; 2010 Feb; 31(5):908-15. PubMed ID: 19853292 [TBL] [Abstract][Full Text] [Related]
12. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. Wang S; Jiang T; Ma M; Hu Y; Zhang J Int J Pharm; 2010 Feb; 386(1-2):249-55. PubMed ID: 19900520 [TBL] [Abstract][Full Text] [Related]
13. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Sayin B; Somavarapu S; Li XW; Thanou M; Sesardic D; Alpar HO; Senel S Int J Pharm; 2008 Nov; 363(1-2):139-48. PubMed ID: 18662762 [TBL] [Abstract][Full Text] [Related]
15. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. Sandri G; Bonferoni MC; Rossi S; Ferrari F; Boselli C; Caramella C AAPS PharmSciTech; 2010 Mar; 11(1):362-71. PubMed ID: 20232266 [TBL] [Abstract][Full Text] [Related]
16. Dry powder inhalations containing thymopentin and its immunomodulating effects in Wistar rats. Gao J; Ding X; Chu C; Lu L; Zhang Y; Chen Y; Fan W; Li G; Gao S Eur J Pharm Sci; 2009 Mar; 36(4-5):572-9. PubMed ID: 19135531 [TBL] [Abstract][Full Text] [Related]
17. Novel thymopentin release systems prepared from bioresorbable PLA-PEG-PLA hydrogels. Zhang Y; Wu X; Han Y; Mo F; Duan Y; Li S Int J Pharm; 2010 Feb; 386(1-2):15-22. PubMed ID: 19895878 [TBL] [Abstract][Full Text] [Related]
18. Multivesicular liposomes for the sustained release of thymopentin: stability, pharmacokinetics and pharmacodynamics. Zuo J; Gong T; Sun X; Huang Y; Peng Q; Zhang Z Pharmazie; 2012 Jun; 67(6):507-12. PubMed ID: 22822538 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Ma Z; Lim TM; Lim LY Int J Pharm; 2005 Apr; 293(1-2):271-80. PubMed ID: 15778065 [TBL] [Abstract][Full Text] [Related]
20. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations. Mahjub R; Radmehr M; Dorkoosh FA; Ostad SN; Rafiee-Tehrani M Drug Dev Ind Pharm; 2014 Dec; 40(12):1645-59. PubMed ID: 24093431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]