These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 17953449)

  • 1. Atomistic simulation of the thermodynamic and transport properties of ionic liquids.
    Maginn EJ
    Acc Chem Res; 2007 Nov; 40(11):1200-7. PubMed ID: 17953449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations.
    Wang Y; Jiang W; Yan T; Voth GA
    Acc Chem Res; 2007 Nov; 40(11):1193-9. PubMed ID: 17935302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular solutes in ionic liquids: a structural perspective.
    Pádua AA; Costa Gomes MF; Canongia Lopes JN
    Acc Chem Res; 2007 Nov; 40(11):1087-96. PubMed ID: 17661440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic force field for pyridinium-based ionic liquids: reliable transport properties.
    Voroshylova IV; Chaban VV
    J Phys Chem B; 2014 Sep; 118(36):10716-24. PubMed ID: 25144141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT.
    Paduszyński K; Domańska U
    J Phys Chem B; 2012 Apr; 116(16):5002-18. PubMed ID: 22469027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations.
    Bedrov D; Borodin O; Li Z; Smith GD
    J Phys Chem B; 2010 Apr; 114(15):4984-97. PubMed ID: 20337454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling and experimental studies of the thermodynamic and transport properties of pyridinium-based ionic liquids.
    Cadena C; Zhao Q; Snurr RQ; Maginn EJ
    J Phys Chem B; 2006 Feb; 110(6):2821-32. PubMed ID: 16471891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics.
    Köddermann T; Paschek D; Ludwig R
    Chemphyschem; 2007 Dec; 8(17):2464-70. PubMed ID: 17943710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of ionic liquids, solutions, and surfaces.
    Lynden-Bell RM; Del Pópolo MG; Youngs TG; Kohanoff J; Hanke CG; Harper JB; Pinilla CC
    Acc Chem Res; 2007 Nov; 40(11):1138-45. PubMed ID: 17914887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renewable feedstocks in green solvents: thermodynamic study on phase diagrams of D-sorbitol and xylitol with dicyanamide based ionic liquids.
    Paduszyński K; Okuniewski M; Domańska U
    J Phys Chem B; 2013 Jun; 117(23):7034-46. PubMed ID: 23683321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A RISM approach to the liquid structure and solvation properties of ionic liquids.
    Bruzzone S; Malvaldi M; Chiappe C
    Phys Chem Chem Phys; 2007 Nov; 9(41):5576-81. PubMed ID: 17957314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures.
    Klamt A; Eckert F; Arlt W
    Annu Rev Chem Biomol Eng; 2010; 1():101-22. PubMed ID: 22432575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic liquids: dissecting the enthalpies of vaporization.
    Köddermann T; Paschek D; Ludwig R
    Chemphyschem; 2008 Mar; 9(4):549-55. PubMed ID: 18283693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ab initio study of the structure and dynamics of bulk liquid Cd and its liquid-vapor interface.
    Calderín L; González LE; González DJ
    J Phys Condens Matter; 2013 Feb; 25(6):065102. PubMed ID: 23334159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint.
    Rebelo LP; Lopes JN; Esperança JM; Guedes HJ; Łachwa J; Najdanovic-Visak V; Visak ZP
    Acc Chem Res; 2007 Nov; 40(11):1114-21. PubMed ID: 17622178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Molecular Simulation to Study Biocatalysis in Ionic Liquids.
    Sprenger KG; Pfaendtner J
    Methods Enzymol; 2016; 577():419-41. PubMed ID: 27498647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect.
    Hu Z; Margulis CJ
    Acc Chem Res; 2007 Nov; 40(11):1097-105. PubMed ID: 17661437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids.
    Zhang Y; Maginn EJ
    J Phys Chem B; 2012 Aug; 116(33):10036-48. PubMed ID: 22852554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-pressure study of the methylsulfate and tosylate imidazolium ionic liquids.
    Aparicio S; Alcalde R; García B; Leal JM
    J Phys Chem B; 2009 Apr; 113(16):5593-606. PubMed ID: 19331328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A force field for molecular simulation of tetrabutylphosphonium amino acid ionic liquids.
    Zhou G; Liu X; Zhang S; Yu G; He H
    J Phys Chem B; 2007 Jun; 111(25):7078-84. PubMed ID: 17552552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.