These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 17953605)
1. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Cazorla FM; Romero D; Pérez-García A; Lugtenberg BJ; Vicente Ad; Bloemberg G J Appl Microbiol; 2007 Nov; 103(5):1950-9. PubMed ID: 17953605 [TBL] [Abstract][Full Text] [Related]
2. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Cazorla FM; Duckett SB; Bergström ET; Noreen S; Odijk R; Lugtenberg BJ; Thomas-Oates JE; Bloemberg GV Mol Plant Microbe Interact; 2006 Apr; 19(4):418-28. PubMed ID: 16610745 [TBL] [Abstract][Full Text] [Related]
3. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Pliego C; Cazorla FM; González-Sánchez MA; Pérez-Jiménez RM; de Vicente A; Ramos C Res Microbiol; 2007 Jun; 158(5):463-70. PubMed ID: 17467245 [TBL] [Abstract][Full Text] [Related]
4. Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Pliego C; de Weert S; Lamers G; de Vicente A; Bloemberg G; Cazorla FM; Ramos C Environ Microbiol; 2008 Dec; 10(12):3295-304. PubMed ID: 18684119 [TBL] [Abstract][Full Text] [Related]
5. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. González-Sánchez MÁ; Pérez-Jiménez RM; Pliego C; Ramos C; de Vicente A; Cazorla FM J Appl Microbiol; 2010 Jul; 109(1):65-78. PubMed ID: 19961545 [TBL] [Abstract][Full Text] [Related]
6. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Mohammadipour M; Mousivand M; Salehi Jouzani G; Abbasalizadeh S Can J Microbiol; 2009 Apr; 55(4):395-404. PubMed ID: 19396239 [TBL] [Abstract][Full Text] [Related]
7. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Romero D; de Vicente A; Rakotoaly RH; Dufour SE; Veening JW; Arrebola E; Cazorla FM; Kuipers OP; Paquot M; Pérez-García A Mol Plant Microbe Interact; 2007 Apr; 20(4):430-40. PubMed ID: 17427813 [TBL] [Abstract][Full Text] [Related]
9. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Chung S; Kong H; Buyer JS; Lakshman DK; Lydon J; Kim SD; Roberts DP Appl Microbiol Biotechnol; 2008 Aug; 80(1):115-23. PubMed ID: 18542950 [TBL] [Abstract][Full Text] [Related]
10. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. Calderón CE; de Vicente A; Cazorla FM FEMS Microbiol Ecol; 2014 Jul; 89(1):20-31. PubMed ID: 24641321 [TBL] [Abstract][Full Text] [Related]
11. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Kim PI; Ryu J; Kim YH; Chi YT J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245 [TBL] [Abstract][Full Text] [Related]
12. Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Guevara-Avendaño E; Carrillo JD; Ndinga-Muniania C; Moreno K; Méndez-Bravo A; Guerrero-Analco JA; Eskalen A; Reverchon F Antonie Van Leeuwenhoek; 2018 Apr; 111(4):563-572. PubMed ID: 29124466 [TBL] [Abstract][Full Text] [Related]
13. Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). Pathak KV; Keharia H J Appl Microbiol; 2013 May; 114(5):1300-10. PubMed ID: 23387377 [TBL] [Abstract][Full Text] [Related]
14. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Swain MR; Ray RC Microbiol Res; 2009; 164(2):121-30. PubMed ID: 17320363 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Chen H; Wang L; Su CX; Gong GH; Wang P; Yu ZL Lett Appl Microbiol; 2008 Sep; 47(3):180-6. PubMed ID: 19552782 [TBL] [Abstract][Full Text] [Related]
16. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Chan YK; McCormick WA; Seifert KA Can J Microbiol; 2003 Apr; 49(4):253-62. PubMed ID: 12897834 [TBL] [Abstract][Full Text] [Related]
17. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Ongena M; Jacques P; Touré Y; Destain J; Jabrane A; Thonart P Appl Microbiol Biotechnol; 2005 Nov; 69(1):29-38. PubMed ID: 15742166 [TBL] [Abstract][Full Text] [Related]
18. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium. Guevara-Avendaño E; Bravo-Castillo KR; Monribot-Villanueva JL; Kiel-Martínez AL; Ramírez-Vázquez M; Guerrero-Analco JA; Reverchon F Braz J Microbiol; 2020 Sep; 51(3):861-873. PubMed ID: 32166656 [TBL] [Abstract][Full Text] [Related]
19. [Identification and characterization of a Bacillus amyloliquefaciens with high antifungal activity]. Quan CS; Wang JH; Xu HT; Fan SD Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):7-12. PubMed ID: 16579456 [TBL] [Abstract][Full Text] [Related]
20. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Vida C; Cazorla FM; de Vicente A Res Microbiol; 2017; 168(6):583-593. PubMed ID: 28373145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]