These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 17953686)
1. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology. Wang YH; Feng JT; Zhang Q; Zhang X J Appl Microbiol; 2008 Mar; 104(3):735-44. PubMed ID: 17953686 [TBL] [Abstract][Full Text] [Related]
2. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization. Wang YH; Li YP; Zhang Q; Zhang X Bioresour Technol; 2008 Apr; 99(6):1708-15. PubMed ID: 17531470 [TBL] [Abstract][Full Text] [Related]
3. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila. Guo S; Zhang S; Fang X; Liu Q; Gao J; Bilal M; Wang Y; Zhang X Microb Cell Fact; 2017 Nov; 16(1):203. PubMed ID: 29141647 [TBL] [Abstract][Full Text] [Related]
4. Statistical optimization of process variables for antibiotic activity of Xenorhabdus bovienii. Fang XL; Han LR; Cao XQ; Zhu MX; Zhang X; Wang YH PLoS One; 2012; 7(6):e38421. PubMed ID: 22701637 [TBL] [Abstract][Full Text] [Related]
5. Effects of constant and shifting dissolved oxygen concentration on the growth and antibiotic activity of Xenorhabdus nematophila. Wang YH; Fang XL; Li YP; Zhang X Bioresour Technol; 2010 Oct; 101(19):7529-36. PubMed ID: 20488698 [TBL] [Abstract][Full Text] [Related]
6. Xenorhabdus antibiotics: a comparative analysis and potential utility for controlling mastitis caused by bacteria. Furgani G; Böszörményi E; Fodor A; Máthé-Fodor A; Forst S; Hogan JS; Katona Z; Klein MG; Stackebrandt E; Szentirmai A; Sztaricskai F; Wolf SL J Appl Microbiol; 2008 Mar; 104(3):745-58. PubMed ID: 17976177 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the yield of Xenocoumacin 1 in Xenorhabdus nematophila YL001 by optimizing the fermentation process. Han Y; Zhang S; Wang Y; Gao J; Han J; Yan Z; Ta Y; Wang Y Sci Rep; 2024 Jun; 14(1):13506. PubMed ID: 38866882 [TBL] [Abstract][Full Text] [Related]
8. Effects of cpxR on the growth characteristics and antibiotic production of Xenorhabdus nematophila. Guo S; Wang Z; Liu B; Gao J; Fang X; Tang Q; Bilal M; Wang Y; Zhang X Microb Biotechnol; 2019 May; 12(3):447-458. PubMed ID: 30623566 [TBL] [Abstract][Full Text] [Related]
9. Response surface methodology for optimizing the fermentation medium of alpha-galactosidase in solid-state fermentation. Liu CQ; Chen QH; Tang B; Ruan H; He GQ Lett Appl Microbiol; 2007 Aug; 45(2):206-12. PubMed ID: 17651220 [TBL] [Abstract][Full Text] [Related]
10. Manipulation of pH shift to enhance the growth and antibiotic activity of Xenorhabdus nematophila. Wang Y; Fang X; Cheng Y; Zhang X J Biomed Biotechnol; 2011; 2011():672369. PubMed ID: 21660139 [TBL] [Abstract][Full Text] [Related]
11. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. Rao ChS; Sathish T; Mahalaxmi M; Laxmi GS; Rao RS; Prakasham RS J Appl Microbiol; 2008 Mar; 104(3):889-98. PubMed ID: 17953681 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the fermentation medium for alpha-galactosidase production from Aspergillus foetidus ZU-G1 using response surface methodology. Liu C; Ruan H; Shen H; Chen Q; Zhou B; Li Y; He G J Food Sci; 2007 May; 72(4):M120-5. PubMed ID: 17995779 [TBL] [Abstract][Full Text] [Related]
13. Medium optimization for the production of a novel bioflocculant from Halomonas sp. V3a' using response surface methodology. He J; Zhen Q; Qiu N; Liu Z; Wang B; Shao Z; Yu Z Bioresour Technol; 2009 Dec; 100(23):5922-7. PubMed ID: 19632109 [TBL] [Abstract][Full Text] [Related]
14. Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design. Hajji M; Rebai A; Gharsallah N; Nasri M Appl Microbiol Biotechnol; 2008 Jul; 79(6):915-23. PubMed ID: 18481054 [TBL] [Abstract][Full Text] [Related]
15. L-asparaginase production by isolated Staphylococcus sp. - 6A: design of experiment considering interaction effect for process parameter optimization. Prakasham RS; Rao ChS; Rao RS; Lakshmi GS; Sarma PN J Appl Microbiol; 2007 May; 102(5):1382-91. PubMed ID: 17448173 [TBL] [Abstract][Full Text] [Related]
16. Use of response surface methodology for optimizing process parameters for high inulinase production by the marine yeast Cryptococcus aureus G7a in solid-state fermentation and hydrolysis of inulin. Sheng J; Chi Z; Yan K; Wang X; Gong F; Li J Bioprocess Biosyst Eng; 2009 Apr; 32(3):333-9. PubMed ID: 18726619 [TBL] [Abstract][Full Text] [Related]
17. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Senthilkumar SR; Ashokkumar B; Chandra Raj K; Gunasekaran P Bioresour Technol; 2005 Aug; 96(12):1380-6. PubMed ID: 15792586 [TBL] [Abstract][Full Text] [Related]
18. Optimization of cyclodextrin glucanotransferase production from Bacillus clausii E16 in submerged fermentation using response surface methodology. Alves-Prado HF; Bocchini DA; Gomes E; Baida LC; Contiero J; Roberto IC; Da Silva R Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):27-40. PubMed ID: 18478374 [TBL] [Abstract][Full Text] [Related]
19. A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. Singh B; Satyanarayana T J Appl Microbiol; 2006 Aug; 101(2):344-52. PubMed ID: 16882141 [TBL] [Abstract][Full Text] [Related]
20. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Wang Y; Fang X; An F; Wang G; Zhang X Microb Cell Fact; 2011 Nov; 10():98. PubMed ID: 22082189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]