These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17953773)

  • 1. Effects of gastrointestinal tissue structure on computed dipole vectors.
    Austin TM; Li L; Pullan AJ; Cheng LK
    Biomed Eng Online; 2007 Oct; 6():39. PubMed ID: 17953773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of gastrointestinal electrophysiology and experimental validation.
    Du P; O'Grady G; Davidson JB; Cheng LK; Pullan AJ
    Crit Rev Biomed Eng; 2010; 38(3):225-54. PubMed ID: 21133835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity.
    Cheng LK; Komuro R; Austin TM; Buist ML; Pullan AJ
    World J Gastroenterol; 2007 Mar; 13(9):1378-83. PubMed ID: 17457969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling gastrointestinal bioelectric activity.
    Pullan A; Cheng L; Yassi R; Buist M
    Prog Biophys Mol Biol; 2004; 85(2-3):523-50. PubMed ID: 15142760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Coordination of the myoelectrical activity of the large and small intestine].
    Lychkova AE
    Eksp Klin Gastroenterol; 2012; (3):59-61. PubMed ID: 22830225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrical description of the generation of slow waves in the antrum of the guinea-pig.
    Edwards FR; Hirst GD
    J Physiol; 2005 Apr; 564(Pt 1):213-32. PubMed ID: 15613372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spatio-temporal dipole simulation of gastrointestinal magnetic fields.
    Bradshaw LA; Myers A; Wikswo JP; Richards WO
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):836-47. PubMed ID: 12848351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling slow wave activity in the small intestine.
    Lin AS; Buist ML; Smith NP; Pullan AJ
    J Theor Biol; 2006 Sep; 242(2):356-62. PubMed ID: 16626759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Migrating motor complexes do not require electrical slow waves in the mouse small intestine.
    Spencer NJ; Sanders KM; Smith TK
    J Physiol; 2003 Dec; 553(Pt 3):881-93. PubMed ID: 14514874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomically realistic torso model for studying the relative decay of gastric electrical and magnetic fields.
    Cheng LK; Buist ML; Pullan AJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3158-61. PubMed ID: 17947011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Problems with extracellular recording of electrical activity in gastrointestinal muscle.
    Sanders KM; Ward SM; Hennig GW
    Nat Rev Gastroenterol Hepatol; 2016 Dec; 13(12):731-741. PubMed ID: 27756919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.
    Wei R; Parsons SP; Huizinga JD
    Exp Physiol; 2017 Mar; 102(3):329-346. PubMed ID: 28036151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study.
    Güllmar D; Haueisen J; Reichenbach JR
    Neuroimage; 2010 May; 51(1):145-63. PubMed ID: 20156576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical events underlying organized myogenic contractions of the guinea pig stomach.
    Hirst GD; Edwards FR
    J Physiol; 2006 Nov; 576(Pt 3):659-65. PubMed ID: 16873400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On a coupled electro-chemomechanical model of gastric smooth muscle contraction.
    Klemm L; Seydewitz R; Borsdorf M; Siebert T; Böl M
    Acta Biomater; 2020 Jun; 109():163-181. PubMed ID: 32294551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of anisotropic compartments on magnetic field and electric potential distributions generated by artificial current dipoles inside a torso phantom.
    Liehr M; Haueisen J
    Phys Med Biol; 2008 Jan; 53(1):245-54. PubMed ID: 18182700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity.
    Komuro R; Cheng LK; Pullan AJ
    Ann Biomed Eng; 2008 Jun; 36(6):1049-59. PubMed ID: 18330701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic behavior of gastric migrating myoelectrical complex.
    Wang ZS; He Z; Chen JD
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1401-6. PubMed ID: 15311825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods.
    Kim JH; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1355-8. PubMed ID: 22254568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.