These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 17955155)
1. Coevolutionary patterns in cytochrome c oxidase subunit I depend on structural and functional context. Wang ZO; Pollock DD J Mol Evol; 2007 Nov; 65(5):485-95. PubMed ID: 17955155 [TBL] [Abstract][Full Text] [Related]
2. Context dependence and coevolution among amino acid residues in proteins. Wang ZO; Pollock DD Methods Enzymol; 2005; 395():779-90. PubMed ID: 15865995 [TBL] [Abstract][Full Text] [Related]
3. Reducing the false positive rate in the non-parametric analysis of molecular coevolution. Codoñer FM; O'Dea S; Fares MA BMC Evol Biol; 2008 Apr; 8():106. PubMed ID: 18402697 [TBL] [Abstract][Full Text] [Related]
4. Protein-protein interfaces from cytochrome c oxidase I evolve faster than nonbinding surfaces, yet negative selection is the driving force. Aledo JC; Valverde H; Ruíz-Camacho M; Morilla I; López FD Genome Biol Evol; 2014 Oct; 6(11):3064-76. PubMed ID: 25359921 [TBL] [Abstract][Full Text] [Related]
5. Slow proton transfer through the pathways for pumped protons in cytochrome c oxidase induces suicide inactivation of the enzyme. Mills DA; Hosler JP Biochemistry; 2005 Mar; 44(12):4656-66. PubMed ID: 15779892 [TBL] [Abstract][Full Text] [Related]
6. Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a. Lee HM; Das TK; Rousseau DL; Mills D; Ferguson-Miller S; Gennis RB Biochemistry; 2000 Mar; 39(11):2989-96. PubMed ID: 10715119 [TBL] [Abstract][Full Text] [Related]
7. Substitutions for glutamate 101 in subunit II of cytochrome c oxidase from Rhodobacter sphaeroides result in blocking the proton-conducting K-channel. Tomson FL; Morgan JE; Gu G; Barquera B; Vygodina TV; Gennis RB Biochemistry; 2003 Feb; 42(6):1711-7. PubMed ID: 12578386 [TBL] [Abstract][Full Text] [Related]
8. A cytochrome c oxidase proton pumping mechanism that excludes the O2 reduction site. Yoshikawa S FEBS Lett; 2003 Nov; 555(1):8-12. PubMed ID: 14630311 [TBL] [Abstract][Full Text] [Related]
9. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase. Schmidt TR; Wu W; Goodman M; Grossman LI Mol Biol Evol; 2001 Apr; 18(4):563-9. PubMed ID: 11264408 [TBL] [Abstract][Full Text] [Related]
10. Functional effects of mutations in cytochrome c oxidase related to prostate cancer. Namslauer I; Dietz MS; Brzezinski P Biochim Biophys Acta; 2011 Oct; 1807(10):1336-41. PubMed ID: 21334999 [TBL] [Abstract][Full Text] [Related]
11. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle. Yano N; Muramoto K; Shimada A; Takemura S; Baba J; Fujisawa H; Mochizuki M; Shinzawa-Itoh K; Yamashita E; Tsukihara T; Yoshikawa S J Biol Chem; 2016 Nov; 291(46):23882-23894. PubMed ID: 27605664 [TBL] [Abstract][Full Text] [Related]
12. Mutations in the D-channel of cytochrome c oxidase causes leakage of the proton pump. Siegbahn PE; Blomberg MR FEBS Lett; 2014 Feb; 588(4):545-8. PubMed ID: 24389245 [TBL] [Abstract][Full Text] [Related]
13. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution. Little DY; Chen L PLoS One; 2009; 4(3):e4762. PubMed ID: 19274093 [TBL] [Abstract][Full Text] [Related]
14. Water chain formation and possible proton pumping routes in Rhodobacter sphaeroides cytochrome c oxidase: a molecular dynamics comparison of the wild type and R481K mutant. Seibold SA; Mills DA; Ferguson-Miller S; Cukier RI Biochemistry; 2005 Aug; 44(31):10475-85. PubMed ID: 16060656 [TBL] [Abstract][Full Text] [Related]
15. Substitution rates in alpha-helical transmembrane proteins. Stevens TJ; Arkin IT Protein Sci; 2001 Dec; 10(12):2507-17. PubMed ID: 11714918 [TBL] [Abstract][Full Text] [Related]
16. Structural Changes and Proton Transfer in Cytochrome c Oxidase. Vilhjálmsdóttir J; Johansson AL; Brzezinski P Sci Rep; 2015 Aug; 5():12047. PubMed ID: 26310633 [TBL] [Abstract][Full Text] [Related]
17. Role of the N-terminus of subunit III in proton uptake in cytochrome c oxidase of Rhodobacter sphaeroides. Alnajjar KS; Hosler J; Prochaska L Biochemistry; 2014 Jan; 53(3):496-504. PubMed ID: 24397338 [TBL] [Abstract][Full Text] [Related]
18. Coevolving protein residues: maximum likelihood identification and relationship to structure. Pollock DD; Taylor WR; Goldman N J Mol Biol; 1999 Mar; 287(1):187-98. PubMed ID: 10074416 [TBL] [Abstract][Full Text] [Related]
19. Structural elements involved in proton translocation by cytochrome c oxidase as revealed by backbone amide hydrogen-deuterium exchange of the E286H mutant. Busenlehner LS; Brändén G; Namslauer I; Brzezinski P; Armstrong RN Biochemistry; 2008 Jan; 47(1):73-83. PubMed ID: 18052347 [TBL] [Abstract][Full Text] [Related]
20. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Fares MA; Travers SA Genetics; 2006 May; 173(1):9-23. PubMed ID: 16547113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]