These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17956142)

  • 1. Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels.
    Lu S; Madhukar A
    Nano Lett; 2007 Nov; 7(11):3443-51. PubMed ID: 17956142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm.
    Lu S; Lingley Z; Asano T; Harris D; Barwicz T; Guha S; Madhukar A
    Nano Lett; 2009 Dec; 9(12):4548-52. PubMed ID: 19856942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical dynamics of energy-transfer from a CdZnO quantum well to a proximal Ag nanostructure.
    Matsui H; Nomura W; Yatsui T; Ohtsu M; Tabata H
    Opt Lett; 2011 Oct; 36(19):3735-7. PubMed ID: 21964080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer in hybrid organic/inorganic nanocomposites.
    Stöferle T; Scherf U; Mahrt RF
    Nano Lett; 2009 Jan; 9(1):453-6. PubMed ID: 19072619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials.
    Nadarajah A; Smith T; Könenkamp R
    Nanotechnology; 2012 Dec; 23(48):485403. PubMed ID: 23129022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes.
    Mahpeykar SM; Xiong Q; Wang X
    Opt Express; 2014 Oct; 22 Suppl 6():A1576-88. PubMed ID: 25607315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.
    Sun XW; Chen J; Song JL; Zhao DW; Deng WQ; Lei W
    Opt Express; 2010 Jan; 18(2):1296-301. PubMed ID: 20173955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.
    Chen J; Xu F; Wu J; Qasim K; Zhou Y; Lei W; Sun LT; Zhang Y
    Nanoscale; 2012 Jan; 4(2):441-3. PubMed ID: 22159842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high quantum efficiency preserving approach to ligand exchange on lead sulfide quantum dots and interdot resonant energy transfer.
    Lingley Z; Lu S; Madhukar A
    Nano Lett; 2011 Jul; 11(7):2887-91. PubMed ID: 21707024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning energetic levels in nanocrystal quantum dots through surface manipulations.
    Soreni-Harari M; Yaacobi-Gross N; Steiner D; Aharoni A; Banin U; Millo O; Tessler N
    Nano Lett; 2008 Feb; 8(2):678-84. PubMed ID: 18179278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-rate unidirectional energy transfer in directly assembled CdTe nanocrystal bilayers.
    Franzl T; Shavel A; Rogach AL; Gaponik N; Klar TA; Eychmüller A; Feldmann J
    Small; 2005 Apr; 1(4):392-5. PubMed ID: 17193460
    [No Abstract]   [Full Text] [Related]  

  • 13. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.
    Hamada M; Nakanishi S; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2010 Aug; 4(8):4445-54. PubMed ID: 20731430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging.
    Zhou ZK; Li M; Yang ZJ; Peng XN; Su XR; Zhang ZS; Li JB; Kim NC; Yu XF; Zhou L; Hao ZH; Wang QQ
    ACS Nano; 2010 Sep; 4(9):5003-10. PubMed ID: 20738124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating the charging energy of nanocrystal arrays.
    Quinn AJ; Beecher P; Iacopino D; Floyd L; De Marzi G; Shevchenko EV; Weller H; Redmond G
    Small; 2005 Jun; 1(6):613-8. PubMed ID: 17193494
    [No Abstract]   [Full Text] [Related]  

  • 16. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.
    Knowles KE; McArthur EA; Weiss EA
    ACS Nano; 2011 Mar; 5(3):2026-35. PubMed ID: 21361353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.
    Beard MC; Johnson JC; Luther JM; Nozik AJ
    Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible to near-infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics.
    Nimmo MT; Caillard LM; De Benedetti W; Nguyen HM; Seitz O; Gartstein YN; Chabal YJ; Malko AV
    ACS Nano; 2013 Apr; 7(4):3236-45. PubMed ID: 23556540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics.
    Yan X; Cui X; Li B; Li LS
    Nano Lett; 2010 May; 10(5):1869-73. PubMed ID: 20377198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy.
    Liang BL; Wang ZM; Wang XY; Lee JH; Mazur YI; Shih CK; Salamo GJ
    ACS Nano; 2008 Nov; 2(11):2219-24. PubMed ID: 19206386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.