These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17956147)

  • 1. Artificial neural network study of whole-cell bacterial bioreporter response determined using fluorescence flow cytometry.
    Busam S; McNabb M; Wackwitz A; Senevirathna W; Beggah S; Meer JR; Wells M; Breuer U; Harms H
    Anal Chem; 2007 Dec; 79(23):9107-14. PubMed ID: 17956147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in optical detection strategies for reporter signal measurements.
    Wells M
    Curr Opin Biotechnol; 2006 Feb; 17(1):28-33. PubMed ID: 16413770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of flow cytometric methods for single-cell analysis in environmental microbiology.
    Czechowska K; Johnson DR; van der Meer JR
    Curr Opin Microbiol; 2008 Jun; 11(3):205-12. PubMed ID: 18562243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive reporter protein detection in genetically engineered bacteria.
    Wells M; Gösch M; Rigler R; Harms H; Lasser T; van der Meer JR
    Anal Chem; 2005 May; 77(9):2683-9. PubMed ID: 15859581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network analysis of flow cytometric data for 40 marine phytoplankton species.
    Boddy L; Morris CW; Wilkins MF; Tarran GA; Burkill PH
    Cytometry; 1994 Apr; 15(4):283-93. PubMed ID: 8026219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial neural network modeling of apoptosis in gamma irradiated human lymphocytes.
    Liberda JJ; Schnarr K; Coulibaly P; Boreham DR
    Int J Radiat Biol; 2005 Nov; 81(11):827-40. PubMed ID: 16484152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioreporters: gfp versus lux revisited and single-cell response.
    Kohlmeier S; Mancuso M; Tecon R; Harms H; van der Meer JR; Wells M
    Biosens Bioelectron; 2007 Mar; 22(8):1578-85. PubMed ID: 16930979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illuminating the detection chain of bacterial bioreporters.
    van der Meer JR; Tropel D; Jaspers M
    Environ Microbiol; 2004 Oct; 6(10):1005-20. PubMed ID: 15344926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations.
    Frankel DS; Olson RJ; Frankel SL; Chisholm SW
    Cytometry; 1989 Sep; 10(5):540-50. PubMed ID: 2776570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of neural networks to flow cytometry data analysis and real-time cell classification.
    Frankel DS; Frankel SL; Binder BJ; Vogt RF
    Cytometry; 1996 Apr; 23(4):290-302. PubMed ID: 8900472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automation and validation of a rapid method to assess neutrophil and monocyte activation by routine fluorescence flow cytometry in vitro.
    Linssen J; Aderhold S; Nierhaus A; Frings D; Kaltschmidt C; Zänker K
    Cytometry B Clin Cytom; 2008 Sep; 74(5):295-309. PubMed ID: 18431775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated particle classification based on digital acquisition and analysis of flow cytometric pulse waveforms.
    Godavarti M; Rodriguez JJ; Yopp TA; Lambert GM; Galbraith DW
    Cytometry; 1996 Aug; 24(4):330-9. PubMed ID: 8866217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots.
    Hahn MA; Keng PC; Krauss TD
    Anal Chem; 2008 Feb; 80(3):864-72. PubMed ID: 18186615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural network approach to burst detection.
    Mounce SR; Day AJ; Wood AS; Khan A; Widdop PD; Machell J
    Water Sci Technol; 2002; 45(4-5):237-46. PubMed ID: 11936639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A method for creating fuzzy neural-network models using the MATLAB package for biomedical applications].
    Zhilin VV; Filist SA; Rakhim KA; Shatalova OV
    Med Tekh; 2008; (2):15-8. PubMed ID: 18507134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of whole-cell bacterial bioreporter immobilization on electrospun cellulose acetate (CA) and polycaprolactone (PCL) fibers for arsenic detection.
    Arik N; Elcin E; Tezcaner A; Oktem HA
    Environ Monit Assess; 2023 May; 195(6):666. PubMed ID: 37178337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and use of flow cytometry optimized plasmid-sensor strains.
    Bahl MI; Oregaard G; Sørensen SJ; Hansen LH
    Methods Mol Biol; 2009; 532():257-68. PubMed ID: 19271190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network identification of heterotrophic marine bacteria based on their fatty-acid composition.
    Giacomini M; Ruggiero C; Bertone S; Calegari L
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1185-91. PubMed ID: 9424456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking environmental heterogeneity and reproductive success at single-cell resolution.
    Remus-Emsermann MN; Leveau JH
    ISME J; 2010 Feb; 4(2):215-22. PubMed ID: 19865185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.