These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17956259)

  • 41. Discovering new antimicrobial agents.
    Moellering RC
    Int J Antimicrob Agents; 2011 Jan; 37(1):2-9. PubMed ID: 21075608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeting the cysteine biosynthesis pathway in microorganisms: Mechanism, structure, and drug discovery.
    Tao Y; Zheng D; Zou W; Guo T; Liao G; Zhou W
    Eur J Med Chem; 2024 May; 271():116461. PubMed ID: 38691891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA as a target for antimicrobials.
    Bolhuis A; Aldrich-Wright JR
    Bioorg Chem; 2014 Aug; 55():51-9. PubMed ID: 24745376
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development.
    Moolman WJ; de Villiers M; Strauss E
    Biochem Soc Trans; 2014 Aug; 42(4):1080-6. PubMed ID: 25110006
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The impact of genomics on discovering drugs against infectious diseases.
    Boshoff HI; Manjunatha UH
    Microbes Infect; 2006 May; 8(6):1654-61. PubMed ID: 16690340
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens.
    Naz S; Ngo T; Farooq U; Abagyan R
    PeerJ; 2017; 5():e3765. PubMed ID: 28948099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial protein targets: towards understanding and intervention.
    Denny PW
    Parasitology; 2018 Feb; 145(2):111-115. PubMed ID: 29143719
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The need to redefine antimicrobial drug discovery.
    Mylonakis E
    Curr Pharm Des; 2011; 17(13):1223-4. PubMed ID: 21470109
    [No Abstract]   [Full Text] [Related]  

  • 49. From an evolutionary perspective, all 'new' antimicrobial targets are old: time to think outside the box.
    Martin JH; Ferro A
    Br J Clin Pharmacol; 2015 Feb; 79(2):165-7. PubMed ID: 25601036
    [No Abstract]   [Full Text] [Related]  

  • 50. Fragment-Based Phenotypic Lead Discovery To Identify New Drug Seeds That Target Infectious Diseases.
    Ayotte Y; Bernet E; Bilodeau F; Cimino M; Gagnon D; Lebughe M; Mistretta M; Ogadinma P; Ouali SL; Sow AA; Chatel-Chaix L; Descoteaux A; Manina G; Richard D; Veyrier F; LaPlante SR
    ACS Chem Biol; 2021 Nov; 16(11):2158-2163. PubMed ID: 34699722
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Editorial: novel strategies for the design of therapeutic antimicrobial peptides.
    Boix E
    Curr Drug Targets; 2012 Aug; 13(9):1119-20. PubMed ID: 22664070
    [No Abstract]   [Full Text] [Related]  

  • 52. The role of genomics in antimicrobial discovery.
    Mills SD
    J Antimicrob Chemother; 2003 Apr; 51(4):749-52. PubMed ID: 12654742
    [No Abstract]   [Full Text] [Related]  

  • 53. Systems biology and its impact on anti-infective drug development.
    Stumpf MP; Robertson BD; Duncan K; Young DB
    Prog Drug Res; 2007; 64():1, 3-20. PubMed ID: 17195469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The medicinal chemistry of anti-infectious agents.
    González-Bello C
    Curr Top Med Chem; 2008; 8(7):532. PubMed ID: 18473881
    [No Abstract]   [Full Text] [Related]  

  • 55. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need.
    Field MC; Horn D; Fairlamb AH; Ferguson MAJ; Gray DW; Read KD; De Rycker M; Torrie LS; Wyatt PG; Wyllie S; Gilbert IH
    Nat Rev Microbiol; 2017 Jul; 15(7):447. PubMed ID: 28579611
    [No Abstract]   [Full Text] [Related]  

  • 56. Author Correction: Anti-trypanosomatid drug discovery: progress and challenges.
    De Rycker M; Wyllie S; Horn D; Read KD; Gilbert IH
    Nat Rev Microbiol; 2022 Nov; 20(11):702. PubMed ID: 36100771
    [No Abstract]   [Full Text] [Related]  

  • 57. The structure of lipopolysaccharide transport protein B (LptB) from Burkholderia pseudomallei.
    Pankov G; Dawson A; Hunter WN
    Acta Crystallogr F Struct Biol Commun; 2019 Apr; 75(Pt 4):227-232. PubMed ID: 30950822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Picking pockets to fuel antimicrobial drug discovery.
    Hunter WN
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):980-4. PubMed ID: 17956259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure-based design of anti-infectives.
    Agarwal AK; Fishwick CW
    Ann N Y Acad Sci; 2010 Dec; 1213():20-45. PubMed ID: 21175675
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure-based drug design: exploring the proper filling of apolar pockets at enzyme active sites.
    Zürcher M; Diederich F
    J Org Chem; 2008 Jun; 73(12):4345-61. PubMed ID: 18510366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.