BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17956327)

  • 1. Respiratory plasticity following intermittent hypoxia: roles of protein phosphatases and reactive oxygen species.
    Wilkerson JE; Macfarlane PM; Hoffman MS; Mitchell GS
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1269-72. PubMed ID: 17956327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.
    Nichols NL; Satriotomo I; Harrigan DJ; Mitchell GS
    Exp Neurol; 2015 Nov; 273():138-50. PubMed ID: 26287750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity.
    Tadjalli A; Seven YB; Perim RR; Mitchell GS
    J Neuroinflammation; 2021 Jan; 18(1):28. PubMed ID: 33468163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Enhanced Phrenic Long-Term Facilitation in
    Nichols NL; Satriotomo I; Allen LL; Grebe AM; Mitchell GS
    J Neurosci; 2017 Jun; 37(24):5834-5845. PubMed ID: 28500219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal protein phosphatase 1 constrains respiratory plasticity after sustained hypoxia.
    Huxtable AG; Peterson TJ; Ouellette JN; Watters JJ; Mitchell GS
    J Appl Physiol (1985); 2018 Nov; 125(5):1440-1446. PubMed ID: 30161006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.
    Huxtable AG; Smith SM; Peterson TJ; Watters JJ; Mitchell GS
    J Neurosci; 2015 Apr; 35(17):6871-80. PubMed ID: 25926462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation.
    Devinney MJ; Nichols NL; Mitchell GS
    J Neurosci; 2016 Jul; 36(30):7877-85. PubMed ID: 27466333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nongenomic Actions of 17-β Estradiol Restore Respiratory Neuroplasticity in Young Ovariectomized Female Rats.
    Dougherty BJ; Kopp ES; Watters JJ
    J Neurosci; 2017 Jul; 37(28):6648-6660. PubMed ID: 28592693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circulatory control of phrenic motor plasticity.
    Perim RR; Mitchell GS
    Respir Physiol Neurobiol; 2019 Jul; 265():19-23. PubMed ID: 30639504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia.
    Huxtable AG; Kopp E; Dougherty BJ; Watters JJ; Mitchell GS
    Respir Physiol Neurobiol; 2018 Oct; 256():21-28. PubMed ID: 29233741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia.
    Wilkerson JE; Satriotomo I; Baker-Herman TL; Watters JJ; Mitchell GS
    J Neurosci; 2008 Mar; 28(11):2949-58. PubMed ID: 18337426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia.
    Baker-Herman TL; Fuller DD; Bavis RW; Zabka AG; Golder FJ; Doperalski NJ; Johnson RA; Watters JJ; Mitchell GS
    Nat Neurosci; 2004 Jan; 7(1):48-55. PubMed ID: 14699417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Severe acute intermittent hypoxia elicits phrenic long-term facilitation by a novel adenosine-dependent mechanism.
    Nichols NL; Dale EA; Mitchell GS
    J Appl Physiol (1985); 2012 May; 112(10):1678-88. PubMed ID: 22403346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species and respiratory plasticity following intermittent hypoxia.
    MacFarlane PM; Wilkerson JE; Lovett-Barr MR; Mitchell GS
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):263-71. PubMed ID: 18692605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal nNOS regulates phrenic motor facilitation by a 5-HT2B receptor- and NADPH oxidase-dependent mechanism.
    MacFarlane PM; Vinit S; Mitchell GS
    Neuroscience; 2014 Jun; 269():67-78. PubMed ID: 24680940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there a link between intermittent hypoxia-induced respiratory plasticity and obstructive sleep apnoea?
    Mahamed S; Mitchell GS
    Exp Physiol; 2007 Jan; 92(1):27-37. PubMed ID: 17099064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
    Fields DP; Braegelmann KM; Meza AL; Mickelson CR; Gumnit MG; Baker TL
    J Physiol; 2019 Aug; 597(15):3951-3967. PubMed ID: 31280489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phrenic long-term facilitation following intrapleural CTB-SAP-induced respiratory motor neuron death.
    Nichols NL; Craig TA; Tanner MA
    Respir Physiol Neurobiol; 2018 Oct; 256():43-49. PubMed ID: 28822818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation.
    Hocker AD; Huxtable AG
    J Appl Physiol (1985); 2018 Aug; 125(2):504-512. PubMed ID: 29565772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild inflammation impairs acute intermittent hypoxia-induced phrenic long-term facilitation by a spinal adenosine-dependent mechanism.
    Marciante AB; Mitchell GS
    J Neurophysiol; 2023 Apr; 129(4):799-806. PubMed ID: 36883762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.