BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17956628)

  • 1. Phylogenetic simulation of promoter evolution: estimation and modeling of binding site turnover events and assessment of their impact on alignment tools.
    Huang W; Nevins JR; Ohler U
    Genome Biol; 2007; 8(10):R225. PubMed ID: 17956628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating evolution of transcription factor binding sites into annotated alignments.
    Bais AS; Grossmann S; Vingron M
    J Biosci; 2007 Aug; 32(5):841-50. PubMed ID: 17914226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CSMET: comparative genomic motif detection via multi-resolution phylogenetic shadowing.
    Ray P; Shringarpure S; Kolar M; Xing EP
    PLoS Comput Biol; 2008 Jun; 4(6):e1000090. PubMed ID: 18535663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution.
    He X; Ling X; Sinha S
    PLoS Comput Biol; 2009 Mar; 5(3):e1000299. PubMed ID: 19293946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites.
    Lelieveld SH; Schütte J; Dijkstra MJ; Bawono P; Kinston SJ; Göttgens B; Heringa J; Bonzanni N
    Nucleic Acids Res; 2016 May; 44(8):e72. PubMed ID: 26721389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative analysis of relative occurrence of transcription factor binding sites in vertebrate genomes and gene promoter areas.
    Stepanova M; Tiazhelova T; Skoblov M; Baranova A
    Bioinformatics; 2005 May; 21(9):1789-96. PubMed ID: 15699025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating phylogenetic footprinting for human-rodent comparisons.
    Sauer T; Shelest E; Wingender E
    Bioinformatics; 2006 Feb; 22(4):430-7. PubMed ID: 16332706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mixture model-based discriminate analysis for identifying ordered transcription factor binding site pairs in gene promoters directly regulated by estrogen receptor-alpha.
    Li L; Cheng AS; Jin VX; Paik HH; Fan M; Li X; Zhang W; Robarge J; Balch C; Davuluri RV; Kim S; Huang TH; Nephew KP
    Bioinformatics; 2006 Sep; 22(18):2210-6. PubMed ID: 16809387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover.
    Dermitzakis ET; Clark AG
    Mol Biol Evol; 2002 Jul; 19(7):1114-21. PubMed ID: 12082130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA.
    Polavarapu N; Mariño-Ramírez L; Landsman D; McDonald JF; Jordan IK
    BMC Genomics; 2008 May; 9():226. PubMed ID: 18485226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences.
    Arnold P; Erb I; Pachkov M; Molina N; van Nimwegen E
    Bioinformatics; 2012 Feb; 28(4):487-94. PubMed ID: 22334039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying functional transcription factor binding sites in yeast by considering their positional preference in the promoters.
    Lai FJ; Chiu CC; Yang TH; Huang YM; Wu WS
    PLoS One; 2013; 8(12):e83791. PubMed ID: 24386279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules.
    He BZ; Holloway AK; Maerkl SJ; Kreitman M
    PLoS Genet; 2011 Apr; 7(4):e1002053. PubMed ID: 21572512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting the limits of regulatory element conservation and divergence estimation using pairwise and multiple alignments.
    Pollard DA; Moses AM; Iyer VN; Eisen MB
    BMC Bioinformatics; 2006 Aug; 7():376. PubMed ID: 16904011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPLE: analysing population genetic variation at transcription factor binding sites.
    Litovchenko M; Laurent S
    Mol Ecol Resour; 2016 Nov; 16(6):1428-1434. PubMed ID: 27106869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mulan: multiple-sequence local alignment and visualization for studying function and evolution.
    Ovcharenko I; Loots GG; Giardine BM; Hou M; Ma J; Hardison RC; Stubbs L; Miller W
    Genome Res; 2005 Jan; 15(1):184-94. PubMed ID: 15590941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory conservation of protein coding and microRNA genes in vertebrates: lessons from the opossum genome.
    Mahony S; Corcoran DL; Feingold E; Benos PV
    Genome Biol; 2007; 8(5):R84. PubMed ID: 17506886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters.
    Sri T; Gupta B; Tyagi S; Singh A
    Mol Phylogenet Evol; 2020 Jun; 147():106777. PubMed ID: 32126279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression.
    Murakami K; Kojima T; Sakaki Y
    BMC Genomics; 2004 Feb; 5(1):16. PubMed ID: 15053842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting.
    Berezikov E; Guryev V; Plasterk RH; Cuppen E
    Genome Res; 2004 Jan; 14(1):170-8. PubMed ID: 14672977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.