These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17956631)

  • 1. Absolute estimation of initial concentrations of amplicon in a real-time RT-PCR process.
    Smith MV; Miller CR; Kohn M; Walker NJ; Portier CJ
    BMC Bioinformatics; 2007 Oct; 8():409. PubMed ID: 17956631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of real-time PCR kinetics.
    Gevertz JL; Dunn SM; Roth CM
    Biotechnol Bioeng; 2005 Nov; 92(3):346-55. PubMed ID: 16170827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.
    Cobbs G
    BMC Bioinformatics; 2012 Aug; 13():203. PubMed ID: 22897900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
    Nikitina TV; Nazarova NIu; Tishchenko LI; Tuohimaa P; Sedova VM
    Tsitologiia; 2003; 45(4):392-402. PubMed ID: 14520871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR.
    Rutledge RG; Stewart D
    BMC Biotechnol; 2008 May; 8():47. PubMed ID: 18466619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Quantitative PCR in the diagnosis of Leishmania].
    Mortarino M; Franceschi A; Mancianti F; Bazzocchi C; Genchi C; Bandi C
    Parassitologia; 2004 Jun; 46(1-2):163-7. PubMed ID: 15305709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative approach for polymerase chain reactions based on a hidden Markov model.
    Lalam N
    J Math Biol; 2009 Oct; 59(4):517-33. PubMed ID: 19057902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous fitting of real-time PCR data with efficiency of amplification modeled as Gaussian function of target fluorescence.
    Batsch A; Noetel A; Fork C; Urban A; Lazic D; Lucas T; Pietsch J; Lazar A; Schömig E; Gründemann D
    BMC Bioinformatics; 2008 Feb; 9():95. PubMed ID: 18267040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematics of quantitative kinetic PCR and the application of standard curves.
    Rutledge RG; Côté C
    Nucleic Acids Res; 2003 Aug; 31(16):e93. PubMed ID: 12907745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model based analysis of real-time PCR data from DNA binding dye protocols.
    Alvarez MJ; Vila-Ortiz GJ; Salibe MC; Podhajcer OL; Pitossi FJ
    BMC Bioinformatics; 2007 Mar; 8():85. PubMed ID: 17349040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches.
    Green SJ; Venkatramanan R; Naqib A
    PLoS One; 2015; 10(5):e0128122. PubMed ID: 25996930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instant evaluation of the absolute initial number of cDNA copies from a single real-time PCR curve.
    Swillens S; Goffard JC; Maréchal Y; de Kerchove d'Exaerde A; El Housni H
    Nucleic Acids Res; 2004 Mar; 32(6):e56. PubMed ID: 15054124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of DNA melting simulation software for in silico diagnostic assay design: targeting regions with complex melting curves and confirmation by real-time PCR using intercalating dyes.
    Rasmussen JP; Saint CP; Monis PT
    BMC Bioinformatics; 2007 Mar; 8():107. PubMed ID: 17391531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The real-time polymerase chain reaction.
    Kubista M; Andrade JM; Bengtsson M; Forootan A; Jonák J; Lind K; Sindelka R; Sjöback R; Sjögreen B; Strömbom L; Ståhlberg A; Zoric N
    Mol Aspects Med; 2006; 27(2-3):95-125. PubMed ID: 16460794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses.
    Gut M; Leutenegger CM; Huder JB; Pedersen NC; Lutz H
    J Virol Methods; 1999 Jan; 77(1):37-46. PubMed ID: 10029323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.
    Choudhary N; Wei G; Govindarajulu A; Roy A; Li W; Picton DD; Nakhla MK; Levy L; Brlansky RH
    J Virol Methods; 2015 Nov; 224():105-9. PubMed ID: 26341059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplicon: software for designing PCR primers on aligned DNA sequences.
    Jarman SN
    Bioinformatics; 2004 Jul; 20(10):1644-5. PubMed ID: 14962918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of rapid polymerase chain reactions: mathematical modeling and experimental verification.
    Whitney SE; Sudhir A; Nelson RM; Viljoen HJ
    Comput Biol Chem; 2004 Jul; 28(3):195-209. PubMed ID: 15261150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for real time quantitative RT-PCR.
    Gibson UE; Heid CA; Williams PM
    Genome Res; 1996 Oct; 6(10):995-1001. PubMed ID: 8908519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.