These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 17956860)
1. Role of the methionine sulfoxide reductase MsrB3 in cold acclimation in Arabidopsis. Kwon SJ; Kwon SI; Bae MS; Cho EJ; Park OK Plant Cell Physiol; 2007 Dec; 48(12):1713-23. PubMed ID: 17956860 [TBL] [Abstract][Full Text] [Related]
2. Methionine sulfoxide reductase B3 deficiency stimulates heme oxygenase-1 expression via ROS-dependent and Nrf2 activation pathways. Kwak GH; Kim KY; Kim HY Biochem Biophys Res Commun; 2016 May; 473(4):1033-1038. PubMed ID: 27059143 [TBL] [Abstract][Full Text] [Related]
3. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276 [TBL] [Abstract][Full Text] [Related]
4. Affinity chromatography: a valuable strategy to isolate substrates of methionine sulfoxide reductases? Tarrago L; Kieffer-Jaquinod S; Lamant T; Marcellin MN; Garin JR; Rouhier N; Rey P Antioxid Redox Signal; 2012 Jan; 16(1):79-84. PubMed ID: 21882992 [TBL] [Abstract][Full Text] [Related]
5. Arabidopsis HDA6 is required for freezing tolerance. To TK; Nakaminami K; Kim JM; Morosawa T; Ishida J; Tanaka M; Yokoyama S; Shinozaki K; Seki M Biochem Biophys Res Commun; 2011 Mar; 406(3):414-9. PubMed ID: 21329671 [TBL] [Abstract][Full Text] [Related]
6. High-affinity and cooperative binding of oxidized calmodulin by methionine sulfoxide reductase. Xiong Y; Chen B; Smallwood HS; Urbauer RJ; Markille LM; Galeva N; Williams TD; Squier TC Biochemistry; 2006 Dec; 45(49):14642-54. PubMed ID: 17144657 [TBL] [Abstract][Full Text] [Related]
7. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Peng Y; Reyes JL; Wei H; Yang Y; Karlson D; Covarrubias AA; Krebs SL; Fessehaie A; Arora R Physiol Plant; 2008 Dec; 134(4):583-97. PubMed ID: 19000195 [TBL] [Abstract][Full Text] [Related]
8. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ; Engelsberger WR; Hincha DK Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434 [TBL] [Abstract][Full Text] [Related]
9. Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Kim HY; Gladyshev VN Biochem Biophys Res Commun; 2004 Aug; 320(4):1277-83. PubMed ID: 15249228 [TBL] [Abstract][Full Text] [Related]
10. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Zhang XH; Weissbach H Biol Rev Camb Philos Soc; 2008 Aug; 83(3):249-57. PubMed ID: 18557976 [TBL] [Abstract][Full Text] [Related]
11. Methionine sulfoxide reductase B3 protects from endoplasmic reticulum stress in Drosophila and in mammalian cells. Kwak GH; Lim DH; Han JY; Lee YS; Kim HY Biochem Biophys Res Commun; 2012 Mar; 420(1):130-5. PubMed ID: 22405767 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis thaliana plastidial methionine sulfoxide reductases B, MSRBs, account for most leaf peptide MSR activity and are essential for growth under environmental constraints through a role in the preservation of photosystem antennae. Laugier E; Tarrago L; Vieira Dos Santos C; Eymery F; Havaux M; Rey P Plant J; 2010 Jan; 61(2):271-82. PubMed ID: 19874542 [TBL] [Abstract][Full Text] [Related]
13. A comparative proteomics approach to detect unintended effects in transgenic Arabidopsis. Ren Y; Lv J; Wang H; Li L; Peng Y; Qu LJ J Genet Genomics; 2009 Oct; 36(10):629-39. PubMed ID: 19840761 [TBL] [Abstract][Full Text] [Related]
14. Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Romero HM; Berlett BS; Jensen PJ; Pell EJ; Tien M Plant Physiol; 2004 Nov; 136(3):3784-94. PubMed ID: 15516509 [TBL] [Abstract][Full Text] [Related]
16. MsrB3 deficiency induces cancer cell apoptosis through p53-independent and ER stress-dependent pathways. Kwak GH; Kim HY Arch Biochem Biophys; 2017 May; 621():1-5. PubMed ID: 28389299 [TBL] [Abstract][Full Text] [Related]
17. A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Gustavsson N; Kokke BP; Härndahl U; Silow M; Bechtold U; Poghosyan Z; Murphy D; Boelens WC; Sundby C Plant J; 2002 Mar; 29(5):545-53. PubMed ID: 11874568 [TBL] [Abstract][Full Text] [Related]
18. Specific activity of methionine sulfoxide reductase in CD-1 mice is significantly affected by dietary selenium but not zinc. Uthus EO; Moskovitz J Biol Trace Elem Res; 2007 Mar; 115(3):265-76. PubMed ID: 17625247 [TBL] [Abstract][Full Text] [Related]
19. Down-regulation of MsrB3 induces cancer cell apoptosis through reactive oxygen species production and intrinsic mitochondrial pathway activation. Kwak GH; Kim TH; Kim HY Biochem Biophys Res Commun; 2017 Jan; 483(1):468-474. PubMed ID: 28007593 [TBL] [Abstract][Full Text] [Related]
20. Substrates of the methionine sulfoxide reductase system and their physiological relevance. Oien DB; Moskovitz J Curr Top Dev Biol; 2008; 80():93-133. PubMed ID: 17950373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]