BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 17956865)

  • 1. The functional role of an interleukin 6-inducible CDK9.STAT3 complex in human gamma-fibrinogen gene expression.
    Hou T; Ray S; Brasier AR
    J Biol Chem; 2007 Dec; 282(51):37091-102. PubMed ID: 17956865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of interleukin 6 response elements (IL-6REs) on the human gamma-fibrinogen promoter: binding of hepatic Stat3 correlates negatively with transactivation potential of type II IL-6REs.
    Duan HO; Simpson-Haidaris PJ
    J Biol Chem; 2003 Oct; 278(42):41270-81. PubMed ID: 12900415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of signal transducer and activator of transcription 3 enhanceosome formation by apurinic/apyrimidinic endonuclease 1 in hepatic acute phase response.
    Ray S; Lee C; Hou T; Bhakat KK; Brasier AR
    Mol Endocrinol; 2010 Feb; 24(2):391-401. PubMed ID: 20032196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes.
    Dow EC; Liu H; Rice AP
    J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implication of BRG1 and cdk9 in the STAT3-mediated activation of the p21waf1 gene.
    Giraud S; Hurlstone A; Avril S; Coqueret O
    Oncogene; 2004 Sep; 23(44):7391-8. PubMed ID: 15286705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen.
    Ray S; Boldogh I; Brasier AR
    Gastroenterology; 2005 Nov; 129(5):1616-32. PubMed ID: 16285960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development.
    Caracciolo V; Laurenti G; Romano G; Carnevale V; Cimini AM; Crozier-Fitzgerald C; Gentile Warschauer E; Russo G; Giordano A
    Cell Cycle; 2012 Mar; 11(6):1202-16. PubMed ID: 22391209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up-regulation of CDK9 kinase activity and Mcl-1 stability contributes to the acquired resistance to cyclin-dependent kinase inhibitors in leukemia.
    Yeh YY; Chen R; Hessler J; Mahoney E; Lehman AM; Heerema NA; Grever MR; Plunkett W; Byrd JC; Johnson AJ
    Oncotarget; 2015 Feb; 6(5):2667-79. PubMed ID: 25596730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation.
    Oqani RK; Kim HR; Diao YF; Park CS; Jin DI
    BMC Dev Biol; 2011 Jun; 11():33. PubMed ID: 21639898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin 1beta inhibits interleukin 6-mediated rat gamma fibrinogen gene expression.
    Zhang Z; Fuller GM
    Blood; 2000 Nov; 96(10):3466-72. PubMed ID: 11071643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDK9 inhibition strategy defines distinct sets of target genes.
    Garriga J; Graña X
    BMC Res Notes; 2014 May; 7():301. PubMed ID: 24886624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive transcription elongation factor b (P-TEFb) contributes to dengue virus-stimulated induction of interleukin-8 (IL-8).
    Li LL; Hu ST; Wang SH; Lee HH; Wang YT; Ping YH
    Cell Microbiol; 2010 Nov; 12(11):1589-603. PubMed ID: 20618343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of NF-kappaB by IL-1beta blocks IL-6-induced sustained STAT3 activation and STAT3-dependent gene expression of the human gamma-fibrinogen gene.
    Albrecht U; Yang X; Asselta R; Keitel V; Tenchini ML; Ludwig S; Heinrich PC; Häussinger D; Schaper F; Bode JG
    Cell Signal; 2007 Sep; 19(9):1866-78. PubMed ID: 17543500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B.
    Cojocaru M; Bouchard A; Cloutier P; Cooper JJ; Varzavand K; Price DH; Coulombe B
    J Biol Chem; 2011 Feb; 286(7):5012-22. PubMed ID: 21127351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting cyclin-dependent kinase 9 sensitizes medulloblastoma cells to chemotherapy.
    Song H; Bhakat R; Kling MJ; Coulter DW; Chaturvedi NK; Ray S; Joshi SS
    Biochem Biophys Res Commun; 2019 Dec; 520(2):250-256. PubMed ID: 31594641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb).
    Qi T; Tang W; Wang L; Zhai L; Guo L; Zeng X
    J Biol Chem; 2011 Apr; 286(17):15171-81. PubMed ID: 21378166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Murine Cell Line Based Model of Chronic CDK9 Inhibition to Study Widespread Non-Genetic Transcriptional Elongation Defects (TEdeff) in Cancers.
    Modur V; Singh N; Muhammad B
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclin-dependent kinase 9 is required for tumor necrosis factor-alpha-stimulated matrix metalloproteinase-9 expression in human lung adenocarcinoma cells.
    Shan B; Zhuo Y; Chin D; Morris CA; Morris GF; Lasky JA
    J Biol Chem; 2005 Jan; 280(2):1103-11. PubMed ID: 15528190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclin K inhibits HIV-1 gene expression and replication by interfering with cyclin-dependent kinase 9 (CDK9)-cyclin T1 interaction in Nef-dependent manner.
    Khan SZ; Mitra D
    J Biol Chem; 2011 Jul; 286(26):22943-54. PubMed ID: 21555514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription.
    Zhou M; Deng L; Lacoste V; Park HU; Pumfery A; Kashanchi F; Brady JN; Kumar A
    J Virol; 2004 Dec; 78(24):13522-33. PubMed ID: 15564463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.