These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Bailleul PA; Newnam GP; Steenbergen JN; Chernoff YO Genetics; 1999 Sep; 153(1):81-94. PubMed ID: 10471702 [TBL] [Abstract][Full Text] [Related]
4. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Osherovich LZ; Weissman JS Cell; 2001 Jul; 106(2):183-94. PubMed ID: 11511346 [TBL] [Abstract][Full Text] [Related]
5. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis. Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794 [TBL] [Abstract][Full Text] [Related]
6. Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast. Gong H; Romanova NV; Allen KD; Chandramowlishwaran P; Gokhale K; Newnam GP; Mieczkowski P; Sherman MY; Chernoff YO PLoS Genet; 2012; 8(4):e1002634. PubMed ID: 22536159 [TBL] [Abstract][Full Text] [Related]
7. Emergence and evolution of yeast prion and prion-like proteins. An L; Fitzpatrick D; Harrison PM BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710 [TBL] [Abstract][Full Text] [Related]
8. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312 [TBL] [Abstract][Full Text] [Related]
9. Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast. MacLea KS; Paul KR; Ben-Musa Z; Waechter A; Shattuck JE; Gruca M; Ross ED Mol Cell Biol; 2015 Mar; 35(5):899-911. PubMed ID: 25547291 [TBL] [Abstract][Full Text] [Related]
13. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants. Shkundina IS; Kushnirov VV; Tuite MF; Ter-Avanesyan MD Genetics; 2006 Feb; 172(2):827-35. PubMed ID: 16272413 [TBL] [Abstract][Full Text] [Related]
14. Importance of low-oligomeric-weight species for prion propagation in the yeast prion system Sup35/Hsp104. Narayanan S; Bösl B; Walter S; Reif B Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9286-91. PubMed ID: 12876196 [TBL] [Abstract][Full Text] [Related]
15. Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton. Li X; Rayman JB; Kandel ER; Derkatch IL Mol Cell; 2014 Jul; 55(2):305-18. PubMed ID: 24981173 [TBL] [Abstract][Full Text] [Related]
17. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles. Liu S; Hossinger A; Hofmann JP; Denner P; Vorberg IM mBio; 2016 Jul; 7(4):. PubMed ID: 27406566 [TBL] [Abstract][Full Text] [Related]
18. Controlling the prion propensity of glutamine/asparagine-rich proteins. Paul KR; Ross ED Prion; 2015; 9(5):347-54. PubMed ID: 26555096 [TBL] [Abstract][Full Text] [Related]
19. Sequence features governing aggregation or degradation of prion-like proteins. Cascarina SM; Paul KR; Machihara S; Ross ED PLoS Genet; 2018 Jul; 14(7):e1007517. PubMed ID: 30005071 [TBL] [Abstract][Full Text] [Related]
20. [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. Toombs JA; Liss NM; Cobble KR; Ben-Musa Z; Ross ED PLoS One; 2011; 6(7):e21953. PubMed ID: 21760933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]