BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17957361)

  • 1. Sensorimotor memory of weight asymmetry in object manipulation.
    Bursztyn LL; Flanagan JR
    Exp Brain Res; 2008 Jan; 184(1):127-33. PubMed ID: 17957361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributing vertical forces between the digits during gripping and lifting: the effects of rotating the hand versus rotating the object.
    Quaney BM; Cole KJ
    Exp Brain Res; 2004 Mar; 155(2):145-55. PubMed ID: 14661118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorimotor memory for object weight is based on previous experience during lifting, not holding.
    van Polanen V; Davare M
    Neuropsychologia; 2019 Aug; 131():306-315. PubMed ID: 31150662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces.
    Zhang W; Gordon AM; Fu Q; Santello M
    J Neurophysiol; 2010 Jun; 103(6):2953-64. PubMed ID: 20357064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory.
    Quaney BM; Rotella DL; Peterson C; Cole KJ
    J Neurosci; 2003 Mar; 23(5):1981-6. PubMed ID: 12629204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight.
    Ameli M; Dafotakis M; Fink GR; Nowak DA
    Neuropsychologia; 2008; 46(9):2383-8. PubMed ID: 18455203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor memory of object weight distribution during multidigit grasp.
    Albert F; Santello M; Gordon AM
    Neurosci Lett; 2009 Oct; 463(3):188-93. PubMed ID: 19647782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited persistence of the sensorimotor memory when transferred across prehension tasks.
    Parikh PJ; Cole KJ
    Neurosci Lett; 2011 Apr; 494(2):94-8. PubMed ID: 21371526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intermanual transfer of anticipatory force control in precision grip lifting is not influenced by the perception of weight.
    Chang EC; Flanagan JR; Goodale MA
    Exp Brain Res; 2008 Feb; 185(2):319-29. PubMed ID: 17934725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorimotor prediction and memory in object manipulation.
    Flanagan JR; King S; Wolpert DM; Johansson RS
    Can J Exp Psychol; 2001 Jun; 55(2):87-95. PubMed ID: 11433790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learned manipulation at unconstrained contacts does not transfer across hands.
    Fu Q; Choi JY; Gordon AM; Jesunathadas M; Santello M
    PLoS One; 2014; 9(9):e108222. PubMed ID: 25233091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure to disrupt the 'sensorimotor' memory for lifting objects with a precision grip.
    Cole KJ; Potash M; Peterson C
    Exp Brain Res; 2008 Jan; 184(2):157-63. PubMed ID: 17717654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material evidence: interaction of well-learned priors and sensorimotor memory when lifting objects.
    Baugh LA; Kao M; Johansson RS; Flanagan JR
    J Neurophysiol; 2012 Sep; 108(5):1262-9. PubMed ID: 22696542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor memory for fingertip forces during object lifting: the role of the primary motor cortex.
    Berner J; Schönfeldt-Lecuona C; Nowak DA
    Neuropsychologia; 2007 Apr; 45(8):1931-8. PubMed ID: 17239907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of weight information depends differently on used hand and handedness for perception and action.
    van Polanen V
    PLoS One; 2022; 17(12):e0278133. PubMed ID: 36512574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Object properties and cognitive load in the formation of associative memory during precision lifting.
    Li Y; Randerath J; Bauer H; Marquardt C; Goldenberg G; Hermsdörfer J
    Behav Brain Res; 2009 Jan; 196(1):123-30. PubMed ID: 18722479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual cues, expectations, and sensorimotor memories in the prediction and perception of object dynamics during manipulation.
    Schneider TR; Buckingham G; Hermsdörfer J
    Exp Brain Res; 2020 Feb; 238(2):395-409. PubMed ID: 31932867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representing multiple object weights: competing priors and sensorimotor memories.
    Baugh LA; Yak A; Johansson RS; Flanagan JR
    J Neurophysiol; 2016 Oct; 116(4):1615-1625. PubMed ID: 27385795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain activity during predictable and unpredictable weight changes when lifting objects.
    Schmitz C; Jenmalm P; Ehrsson HH; Forssberg H
    J Neurophysiol; 2005 Mar; 93(3):1498-509. PubMed ID: 15385599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Representations of Sensorimotor Memory- and Digit Position-Based Load Force Adjustments Before the Onset of Dexterous Object Manipulation.
    Marneweck M; Barany DA; Santello M; Grafton ST
    J Neurosci; 2018 May; 38(20):4724-4737. PubMed ID: 29686047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.